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Abstract

This paper studies how tax-and-transfer progressivity influences aggregate fluctuations

when interacting with household heterogeneity. Using a simple static model of the extensive

margin labor supply, we analytically characterize how a degree of progressivity influences

differential labor supply responses to aggregate conditions across heterogeneous households.

We then build a quantitative dynamic general equilibrium model with both idiosyncratic

and aggregate productivity shocks and show that it delivers moderately procyclical average

labor productivity and a large cyclical volatility of aggregate hours relative to output. Our

quantitative exercises suggest that progressivity at the bottom of the income distribution

shaped by the phasing out of transfers is key for these findings. Finally, we provide sug-

gestive empirical evidence on the heterogeneity of employment responses across the wage

distribution.
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1 Introduction

A large body of literature has investigated the macroeconomic implications of the progressive na-

ture of taxes and transfers.1 A natural yet relatively unexplored question is how the progressivity

of taxes and transfers affects aggregate fluctuations. This paper asks how the degree of tax-and-

transfer progressivity alters the way aggregate shocks are transmitted to the macroeconomy with

endogenous labor supply at the extensive margin.2

We begin by considering a simple static model of the extensive margin labor supply, with

agents who differ in their potential earnings (high or low) and assets according to a distribution

featuring a high concentration near zero. We consider higher progressivity a variation in the

transfer schedule, such that agents with low potential earnings (the low type) receive more than

those with high potential earnings (the high type). We show that higher progressivity induces

the labor supply of the low type to respond more strongly to the aggregate shifter. This is

because the threshold asset relevant to the employment decision moves closer to zero, around

which there is a higher density of (marginal) agents. Consequently, higher progressivity leads to

a lower cyclicality of average labor productivity through changes in the composition of workers

(Bils 1985), and potentially to a greater volatility of aggregate hours driven by the low type.

To explore the role of tax-and-transfer progressivity quantitatively, we then consider a stan-

dard incomplete-markets framework with heterogeneous households who make consumption-

savings and extensive margin labor supply decisions in the presence of both idiosyncratic pro-

ductivity risk and aggregate risk (Chang and Kim 2006). Since various welfare programs for

low-income households are phased out as income rises, overall tax-and-transfer progressivity

may vary over the income distribution with it being particularly high at the bottom of the

income distribution.3 To better replicate this empirical pattern, we use two parsimonious yet

flexible nonlinear functions for taxes and transfers, separately. We calibrate our model economy

to match some salient features in the micro-level data, including the degree of progressivity in

welfare programs in the Survey of Income and Program Participation (SIPP) data.

We find that our baseline model delivers aggregate labor market dynamics that differ con-

1The research questions that have been considered include normative ones (such as optimal progressivity) and
positive ones (such as the role of progressivity in explaining macroeconomic outcomes). For example, see Conesa
et al. (2009), Heathcote et al. (2014), Bick and Fuchs-Schündeln (2018), and Guner et al. (2020) among others.

2The sizes of welfare programs in the United States– e.g., cash transfers, and food, medical, and childcare sup-
port to low-income households– have been steadily growing since the 1970s (Ben-Shalom et al. 2011). Nonetheless,
some recent papers found that progressivity has had no clear trend during the post war period, despite a few
drastic ups and downs (e.g., Ferriere and Navarro (2022) who focused on taxes, and Heathcote et al. (2020) who
considered both taxes and transfers among working-age individuals).

3For example, Fleck et al. (2021) and Ferriere et al. (2022) find that a single log-linear progressive taxation
function is not suffi cient to approximate the observed tax and transfer scheme, especially at the bottom of the
income distribution where progressivity is disproportionately larger.
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siderably from its nested versions that abstract either from transfers entirely, from differences in

transfers across households, or from household heterogeneity. Specifically, it generates consid-

erably lower correlations between average labor productivity and output (0.69) compared to all

the nested models (between 0.84 and 0.95, as compared to 0.30 in the data). At the same time,

the cyclical volatility of aggregate hours relative to output is 0.73 in the baseline model, which is

higher than 0.51 and 0.60 in the nested heterogeneous-agent models and is much closer to 0.80

obtained from its representative-agent counterpart: a version of a Hansen—Rogerson economy

that is known to be successful in generating a high volatility of hours.4

It is important to note that the model specifications with household heterogeneity do not

achieve the quantitative success in the absence of transfers, even though we maintain the degree

of tax progressivity. This suggests that transfers play important roles in delivering the above

results. First, with the transfer schedule entered separately that enables us to better replicate

progressivity at the bottom of the income distribution, our baseline quantitative model can de-

liver the theoretic mechanism highlighted in the analytical model more effectively. We visualize

this by using impulse response functions at the disaggregated level that show that low produc-

tivity households are more responsive to changes in aggregate shocks in our baseline model with

progressive transfers, when compared to one without them. The second role arises due to risk

and market incompleteness. In the absence of any transfers, the labor supply of low productivity

households is highly inelastic irrespective of aggregate conditions for precautionary reasons. The

presence of transfers mitigates this precautionary motive, thereby raising the responsiveness of

their labor supply to aggregate shocks.

Next, we conduct another counterfactual exercise where we raise progressivity by using either

the tax function or the transfer function. We find that higher progressivity through a faster phase-

out of the transfer system further reduces the correlation between average labor productivity and

output and raises the volatility of hours. On the other hand, changes in tax progressivity holding

the transfer scheme unchanged has limited effects on aggregate labor market dynamics. These

results reinforce the above finding that progressivity shaped by the rate at which welfare transfers

are phased out matter for labor market fluctuations with labor supply at the extensive margin.

Finally, we use micro data from the Panel Study of Income Dynamics (PSID) to empirically

explore the heterogeneity of employment changes. Specifically, we find that the individual-level

probability of adjusting labor at the extensive margin is significantly higher among low-wage

workers, and that the full-time employment rate has fallen more in lower wage quintiles during

4Hagedorn and Manovskii (2008) find that in models with labor search frictions, unemployment benefits closer
to the potential wage make the value of working closer to that of being unemployed. This in turn increases labor
market volatilities, and we note similarities with our volatility results in this regard. However, our key model
mechanism relies on heterogeneity across households in terms of wealth and the size of transfers. This enables us
to go beyond labor market volatilities and study issues related to the cyclicality of average labor productivity.
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the most recent recessions.

Although extensive studies have shown the importance of heterogeneity in accounting for

macroeconomic aggregates and equilibrium prices in the absence of aggregate risk (Huggett

1993; Heathcote 2005), the earlier literature that considers aggregate uncertainty often found

that incorporating micro-level heterogeneity has only limited impacts on the business cycle fluc-

tuations of macroeconomic aggregates (e.g., Krusell and Smith 1998; Khan and Thomas 2008;

Chang and Kim 2014). Our main result– that household heterogeneity at the micro level can be

important for understanding the dynamics of macroeconomic variables– is broadly in line with

recent papers, such as Krueger et al. (2016), and Ahn et al. (2017).

Weak correlations between average labor productivity and output or hours– often referred

to as the Dunlop—Tarshis observation– are known to be diffi cult to explain using standard real

business cycle models. The literature has suggested various mechanisms to dampen strongly

positive correlations, with earlier studies relying on the introduction of additional shocks to

representative-agent models such as home-production technology shocks (Benhabib et al. 1991),

government spending shocks (Christiano and Eichenbaum 1992), and income tax shocks (Braun

1994). Recently, Takahashi (2020) reduces the correlation between average labor productivity and

hours by incorporating uncertainty shocks into a standard heterogeneous-agent model (Chang

and Kim 2007). Our result is distinct from the existing literature because our mechanism relies

on the existence of institutional features leading to heterogeneous responses.

Our quantitative model highlights the effect government transfers have on the precautionary

behavior of poor households. Hubbard et al. (1995) show that social insurance discourages pre-

cautionary savings among low-income households. Using an incomplete-markets model without

aggregate uncertainty, Yum (2018) finds that transfers are important in bringing the employ-

ment rate of wealth-poor households closer to the data, which has important implications for

the long-run employment effects of labor taxes. Our results suggest that they have important

implications for the dynamics of macroeconomic aggregates over the business cycle as well.

The rest of this paper is organized as follows. Section 2 presents the simple static model

and present the analytic results on its key mechanism. Section 3 introduces the quantitative

dynamic models. Section 4 explains calibration and shows the properties of the quantitative

models in stationary equilibrium. Section 5 presents the main quantitative results. Section 6

presents empirical supporting evidence. Section 7 then presents our conclusions.
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2 A static model of the extensive margin labor supply

In this section, we present a simple static model of the extensive margin labor supply.5 The

goal of this section is to illustrate the direct effects of fiscal policy on aggregate labor market

fluctuations in a tractable way. This tractability is achieved by the simplifying assumption

that the distribution of wealth is fixed with respect to changes in fiscal policy, and that it is

independent of potential earnings. As fiscal policy may change the distribution of wealth, and

because this indirect effect could potentially affect the theoretical predictions of this section, we

will explore this mechanism using a more realistic dynamic model in the subsequent sections.

Our model here considers a continuum of agents in the unit interval. We assume that there

are two types of agents with different potential earnings (or wage offers). That is, the individual

component of the potential wage can be either low or high: xi ∈ {xl, xh}. The mass of each type
is denoted by πl and πh satisfying the condition πl + πh = 1. Agents also differ in their level of

asset holdings ai, and they can choose to either work full-time or not at all: ni ∈ {0, 1}.
The decision problem of each type i is given by:

max
ci≥0,ni∈{0,1}

{log ci − bni}

subject to

ci ≤ zxini + ai + Ti,

where c denotes consumption and b > 0 captures the disutility of work. We set b = log(2) > 0

without loss of generality. We use z to denote an aggregate shifter of potential earnings and

consider its small perturbations to be the source of aggregate fluctuations. To study the role of

progressivity, we allow Ti to depend on the type i (or potential wages).6

By comparing the utility conditional on working to that on not working, the agent chooses

to work if:

log (zxi + Ti + ai)− b ≥ log (Ti + ai) ,

5Our analytical framework in this section builds on the theoretical framework of Doepke and Tertilt (2016),
although the focus of our analysis is different. Whereas their model is based on two gender types and continuous
preference heterogeneity, our model is instead based on two wage-offer types and continuous asset heterogeneity.
Moreover, our results cover not only labor supply elasticity but also average labor productivity.

6We can interpret Ti as transfers net of taxes, or equivalently, negative taxes net of transfers. We opt for
the former for expositional convenience. In this section, we require Ti to be non-negative. If Ti is negative, this
complicates the analytical derivations since consumption could become negative especially for those with low a
and low x.

4



or if

ai ≤ zxi − Ti.

This decision rule shows that the agent is more likely to choose to work if the aggregate shifter z

or the individual earnings potential x is higher. Also note that the agent is less likely to choose

to work if the size of the transfers is higher.

In this model, aggregate employment is determined by both the decision rule and by the

distribution. Let F (a) be the conditional (differentiable) distribution function of assets with

its probability density being f(a) = F ′(a). Specifically, we use the exponential function in our

following results. For a ≥ 0;

F (a) = 1− exp(−a),

f(a) = F ′(a) = exp(−a).

This density function has a long right tail in its asset distribution, with a large fraction holding

low wealth, being in line with the data.

Given the density function and the decision rule, the fraction of agents working (i.e., the

employment rate) for each type is given by:

N = F (ai) = 1− exp(−ai),

where

ai = zxi − Ti. (1)

In other words, the employment rate Ni of the type i is the integral of all those type i agents

whose asset level is lower than the threshold level ai. We now present some theoretical results

based on this model, with all proofs provided in Appendix A.

Proposition 1 Let εi be the labor supply elasticity of the type i agents:

εi ≡
∂Ni

∂z

z

Ni

.

Assume Ti = 0. The labor supply elasticity of agents with low potential earnings is greater than

that of agents with high potential earnings. That is, εl > εh.

This shows that our model naturally delivers the heterogeneity of labor supply elasticity. The

shape of the wealth distribution and the relative location of threshold assets are important for

this result. To see this, note that the threshold asset level for the low-potential-wage agents is
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Figure 1: Visual illustration of Proposition 1

Note: The shaded areas denote the relevant density of agents who are affected by perturbations in the aggregate

shifter z.

lower than that for the high-potential-wage agents: al < ah. As shown in Figure 1, the density of

the distribution around al is greater. Since there are more marginal agents around al, the same

change in the aggregate shifter z– which perturbs both al and ah– will more strongly affect the

employment rate of the low-potential-wage agents.

We now consider the role of government transfers and how they interact with heterogeneity.

To simplify the algebra, we impose symmetry. Specifically, we assume that πl = πh = 0.5. In

addition, xh = 1 + λ and xl = 1− λ, where λ ∈ (0, 1) measures the cross-sectional dispersion.

To study the effects of progressivity, Ti is assumed to be:

Tl = T (1 + ωλ) ,

Th = T (1− ωλ) ,

where T ∈ [0, z(1 − λ)/2] captures the scale of transfers and ω ∈ [0, 1/λ] shapes the degree of

progressivity.7 Note that a change in ω does not affect the aggregate size of the transfers.8 Given

the above assumptions, the employment rates for each type are given by Ni = 1 − exp(−ai),
where al = z(1− λ)− T − Tωλ and ah = z(1 + λ)− T + Tωλ.

Proposition 2 Greater progressivity increases the labor supply elasticity of the low-potential-
wage agents, while it decreases the labor supply elasticity of the high-potential-wage agents. That

is, ∂εl
∂ω

> 0 and ∂εh
∂ω

< 0.

7The maximum values of T and ω ensure that the threshold assets stay non-negative.
8Progressivity can increase through two channels: (i) the scale of the transfers, and (ii) the relative size of

the transfers received by low-income households. A change in ω is meant to capture the second channel (i.e.,
controlling the speed of phasing-out of welfare transfers).
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Intuitively, greater progressivity (or a higher ω) shifts al to the left where the distribution is

denser. There, the same change in the aggregate shifter z would induce more agents to change

their employment decision, thereby leading to an even larger elasticity for the low-potential-wage

agents. By contrast, greater progressivity shifts ah to the right, around which the distribution

of assets is thinner. This implies that the elasticity of the high-potential-wage agents should

become smaller.

Proposition 3 Let N denote the aggregate employment rate: N = πlNl + πhNh. Let ε be the

aggregate labor supply elasticity:

ε ≡ ∂N

∂z

z

N
.

The aggregate labor supply elasticity is higher with greater progressivity. That is, ∂ε
∂ω
> 0.

The key to this result is that an increase in the elasticity of low-potential-wage agents should

be large enough to outweigh the opposing effects from a decrease in the elasticity of high-potential-

wage types. Given that the density function declines at an increasing rate, this condition is sat-

isfied. This result suggests that progressivity potentially has a role in generating large volatility

in aggregate hours, as observed in the data.

Finally, we consider the implications for the cyclicality of average labor productivity. We

define average labor productivity as output divided by aggregate hours:

χ ≡
∑

j∈{l,h} πi (zxiNi)∑
j∈{l,h} πiNi

= z

∑
j∈{l,h} πi (xiNi)∑
j∈{l,h} πiNi

≡ zχ0,

where we separately define the second term as χ0. Here, we can clearly see that a change

in the aggregate shifter z would directly cause average labor productivity to become procyclical

through the first term z, as is the case in real business cycle models. The second term χ0 captures

the effects through worker composition, which indirectly depends on z through heterogeneous

employment responses. The following two propositions focus on this second term.

Proposition 4 A change in the aggregate shifter z has a direct and an indirect effect on average
labor productivity zχ0(z). The indirect effect is negative: ∂χ0(z)

∂z
< 0.

Proposition 5 Average labor productivity becomes less positively (or more negatively) correlated
with z as progressivity increases: ∂

∂ω

(
∂χ0
∂z

)
< 0.

Proposition 5 shows that progressivity can shape the cyclicality of average labor productivity

through worker composition effects. To see what this means, let us suppose that the aggregate
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shifter z increases (i.e., in a boom). While both types of agents are more likely to work, rela-

tively more low-type workers would do so when progressivity is greater. This follows from the

disproportionate rise in low-type labor supply elasticity shown in Proposition 3. This force would

cause lower increases in average labor productivity during booms, thereby dampening the tight

positive link between z and average labor productivity.

3 Quantitative business cycle models

As noted earlier, the key results in Section 2 capture the direct effects of fiscal policy changes

since they are derived in a static environment. Therefore, it is a quantitative question whether

this mechanism would be relevant in a more realistic and dynamic model environment. In the

remaining sections, we explore the key mechanisms in models that allow endogenous wealth

distributions that can differ by productivity types.

3.1 Baseline model

The baseline quantitative model we use here builds on a standard incomplete-markets framework

with both idiosyncratic productivity risk (Huggett 1993; Aiyagari 1994) and aggregate risk,

as pioneered by Krusell and Smith (1998). In this model, heterogeneous households make a

consumption-savings choice– which endogenizes the distribution of wealth– and a labor supply

decision at the extensive margin. There are also differences in transfers across households.

Households The model economy is populated by a continuum of infinitely lived households.

It is convenient to describe the decision problem faced by such households in a recursive manner.

At the beginning of each period, households are distinguished by their asset holdings a and

productivity xi. We assume that xi takes a finite number of values Nx and follows a Markov

chain with transition probabilities πxij from state i to state j. In addition to the individual

state variables, a and xi, there are also aggregate state variables, including the distribution of

households µ(a, xi) over a and xi, and aggregate total factor productivity shocks zk. We also

assume that zk takes a finite number of values Nz following a Markov chain with transition

probabilities πzkl from state k to state l. We assume that these Markov processes of individual

productivity x and aggregate total factor productivity (TFP) shock z capture the following

continuous AR(1) processes in logarithms:

log x′ = ρx log x+ ε′x, (2)

log z′ = ρz log z + ε′z, (3)
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where εx ∼ N(0, σ2x) and εz ∼ N(0, σ2z). We denote a variable with a prime symbol its value

in the next period. Finally, we assume competitive markets: households take as given the wage

rate per effi ciency unit of labor w(µ, zk) and the real interest rate r(µ, zk), both of which depend

on the aggregate state variables. Households also take government policies as given.

The dynamic decision problem facing households can then be written as the following func-

tional equation:

V (a, xi, µ, zk) = max
{
V E(a, xi, µ, zk), V

N(a, xi, µ, zk)
}
,

where

V E(a, xi, µ, zk) = max
a′≥a,
c≥0

{
log c−Bn̄+ β

Nx∑
j=1

πxij

Nz∑
l=1

πzklV (a′, x′j, µ
′, z′l)

}
(4)

subject to

c+ a′ ≤ τ(e, ē)e+ (1 + r(µ, zk))a+ T (5)

e = w(µ, zk)xin̄

T = T1 + T2(m)

m = e+ r(µ, zk) max{a, 0}
µ′ = Γ(µ, zk).

and

V N(a, xi, µ, zk) = max
a′≥a,
c≥0

{
log c+ β

Nx∑
j=1

πxij

Nz∑
l=1

πzklV (a′, x′j, µ
′, z′l)

}
(6)

subject to

c+ a′ ≤ (1 + r(µ, zk))a+ T (7)

T = T1 + T2(m)

m = r(µ, zk) max{a, 0}
µ′ = Γ(µ, zk).

Households maximize utility by choosing their optimal consumption c, their asset holdings in

the next period a′, and their labor supply n. Households also face a borrowing limit a ≤ 0.

Their labor supply decision is discrete (i.e., n ∈ {0, n̄}), and the disutility of work is captured
by B > 0. Households understand that the expected future value (discounted by a discount

factor β) is affected by stochastic processes for individual productivity x′ and aggregate TFP
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productivity z′, as well as the whole distribution µ′. The budget constraints state that the sum

of spending should be less than or equal to the sum of income. The evolution of µ is governed

by the law of motion, as denoted by µ′ = Γ(µ, zk).

As shown in the budget constraints, our model incorporates a progressive tax and transfer

system, and these two components are captured separately by two nonlinear functions. First,

earnings e are subject to progressive taxation– as is standard in the recent quantitative macro-

economics literature. Specifically, for those who have earnings e, progressive taxation leads to a

tax rate of:

τ(e, ē) = max
{

1−
(
λs (e/ē)−λp

)
, 0
}
. (8)

Note that, although this function follows the parametric form of Benabou (2002) and Heathcote

et al. (2014), we restrict τ(e) to being non-negative. As is well known, λp ≥ 0 captures the

degree of progressivity and λs ≥ 0 inversely controls the scale of taxation. As the input into the

progressive tax schedule is earnings normalized by its average ē (Guner et al. 2014), a change

in λp tilts this schedule around average earnings. This strongly affects tax progressivity yet has

little effect on the size of taxation.

On top of this typical progressive tax schedule, we also separately introduce progressive

transfers. This helps us to better capture progressivity at the bottom of the income distribution,

which is diffi cult to replicate with a single nonlinear tax function (Fleck et al. 2021; Ferriere et al.

2022). Following Krusell and Rios-Rull (1999), we make the specific assumption that transfers

T consist of two components. The first component T1 is given to all households equally, whereas

the second component T2 captures the income security aspect of transfers. In the U.S., there are

various means-tested programs, such as the Supplemental Nutrition Assistance Program (SNAP)

(formerly known as food stamps), and the Temporary Assistance for Needy Families (formerly

the Aid to Families with Dependent Children). As shown in Section 4, the existence of these

programs leads us to the observation that the amount of transfers is negatively associated with

income. We assume that T2 depends on total household income m, and use this to replicate the

measured transfer progressivity observed in the U.S. data using the following functional form

(Yum 2018):

T2(m) = ωs(1 +m)−ωp . (9)

This parametric assumption adds two parameters. First, ωs ≥ 0 is a scale parameter that

determines the overall size of the non-flat part of government transfers (i.e., T2). The next

parameter, ωp ≥ 0, governs the degree of progressivity: a higher ωp makes T2 decrease faster

with income.
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Representative firm and government Aggregate output Y is produced by a representative

profit-maximizing firm that solves

max
K,L
{zkF (K,L)− (r(µ, zk) + δ)K − w(µ, zk)L} (10)

where F (K,L) captures a standard neoclassical production technology in whichK denotes aggre-

gate capital, L denotes aggregate effi ciency units of labor inputs, and δ is the capital depreciation

rate. As is standard in the literature, we assume that the aggregate production function follows

a Cobb-Douglas function with constant returns to scale:

F (K,L) = KαL1−α. (11)

The first-order conditions for K and L give

r(µ, zk) = zkF1(K,L)− δ, (12)

w(µ, zk) = zkF2(K,L). (13)

The government in this economy collects labor taxes from households and uses the tax rev-

enue to finance total transfers to households. The remaining tax revenue is spent as government

spending G, which is not valued by households. Note that government spending plays no impor-

tant role in the exercises of this paper.

Equilibrium A recursive competitive equilibrium is a collection of factor prices r(µ, zk) and

w(µ, zk); household decision rules ga(a, xi, µ, zk) and gn(a, xi, µ, zk); government spending G;

a value function V (a, xi, µ, zk); a distribution of households µ(a, xi) over the state space; the

aggregate capital and labor K(µ, zk) and L(µ, zk); and the aggregate law of motion Γ(µ, zk);

such that

1. Given factor prices r(µ, zk) and w(µ, zk), the value function V (a, xi, µ, zk) solves the house-

hold decision problems defined above, with the associated household decision rules being:

a′∗ = ga(a, xi, µ, zk), (14)

n∗ = gn(a, xi, µ, zk). (15)

2. Given factor prices r(µ, zk) and w(µ, zk), the firm optimally chooses K(µ, zk) and L(µ, zk)

following (12) and (13).
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3. Markets clear:

K(µ, zk) =
Nx∑
i=1

∫
a

adµ (16)

L(µ, zk) =
Nx∑
i=1

∫
a

xign(a, xi, µ, zk)dµ. (17)

4. Government balances its budget. That is, the sum of government spending G and total

transfers to households is equal to the total tax revenue.

5. The law of motion for the distribution of households over the state space µ′ = Γ(µ, zk) is

consistent with individual decision rules and the stochastic processes governing xi and zk.

3.2 Alternative model specifications

In addition to the baseline model just introduced, we also consider alternative specifications

to illustrate the importance of the interplay between household heterogeneity and government

transfers.9 For convenience, the baseline model featuring "Heterogeneous Agents" and "Tar-

geted" transfers is called Model (HA-T).

The first alternative model specification, denoted as Model (HA-N), is simply a nested spec-

ification of the baseline "Heterogeneous-Agent" model with "No" government transfers (i.e.,

T1 = ωs = 0). This model roughly corresponds to the standard incomplete-markets real busi-

ness cycle model of Chang and Kim (2007), with household heterogeneity and endogenous labor

supply at the extensive margin.10

The second alternative model specification also keeps household heterogeneity but removes

differences in transfers across households. We call this model specification Model (HA-F), which

is obtained as a nested "Heterogeneous-Agent" model by making transfers "Flat"– that is, in-

dependent of income (ωp = 0). Chang et al. (2013) also consider a business cycle model that is

close to this model specification. Note that this form of transfers (flat lump-sum) is very broadly

used in the quantitative macroeconomics literature.

Our final alternative specification shuts down household heterogeneity. This "Representative-

Agent" version of the model is called Model (RA). Given the indivisible labor supply assumption,

9We have also considered a specification which shuts down tax progressivity only. Because its quantitative role
is minimal, we have placed those results in Appendix H as a sensitivity check. In Section 5.3, we also consider a
counterfactual exercise where we alter tax progressivity using the baseline model specification.
10A noticeable difference between Model (HA-N) in our paper and the model in Chang and Kim (2007) is that

ours includes progressive taxation whereas theirs does not. However, as shown in Section 5 and Appendix H,
the business cycle properties of the model are barely affected by the existence of progressive taxation– except for
output volatility.
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Model (RA) is essentially the business cycle model studied in Hansen (1985) augmented with

taxes and transfers. The key feature of this model specification is that the aggregation of Roger-

son (1988) under certain assumptions (such as employment lotteries and consumption insurance)

leads to the introduction of the stand-in household whose disutility from work is linear– a pow-

erful mechanism used to generate the large volatility of aggregate hours, observed in U.S. data

(Hansen 1988). Appendix G includes the detailed model environment and its equilibrium defin-

ition.

3.3 Solution method

We solve each of the models numerically. Several key features make the numerical solution

method nontrivial for the heterogeneous-agent models. First, the key decision variables in our

model are a discrete employment choice and a consumption-savings choice in the presence of

a borrowing constraint. Therefore, our solution method is based on a nonlinear method (i.e.,

the value function iteration) applied to the recursive representation presented above. Second,

the aggregate law of motion and the state variables involve an infinite-dimensional object: the

distribution µ. This requires us to solve the model by approximating the distribution of wealth

as its mean (Krusell and Smith 1998). Since market-clearing is nontrivial in our model with

endogenous labor, our solution method also incorporates an additional step to when simulating

the model to find market-clearing prices in each period.

We now describe the solution method briefly, with more details found in Appendix G. Follow-

ing Krusell and Smith (1998), we assume that households use a smaller object that approximates

the infinite-dimensional distribution when they forecast the future state variables in order to

make current decisions. More precisely, we approximate µ(a, xi) by its mean with respect to

the asset distribution K. Furthermore, when determining the aggregate capital in the next pe-

riod K ′, real wage per effi ciency units w and real interest rate r are assumed to be functions of

(K, zk) instead of (µ, zk). We impose parametric assumptions to approximate the aggregate law

of motion K ′ = Γ(K, zk) and w = w(K, zk) following

K̂ ′ = Γ̂(K, zk) = exp (a0 + a1 logK + a2 log zk) (18)

ŵ = ŵ(K, zk) = exp (b0 + b1 logK + b2 log zk) , (19)

as in Chang and Kim (2006, 2007). Households obtain a forecasted r̂ based on these forecasting

rules, as implied by the first-order conditions of the profit maximization problem facing the

representative firm.

The model is solved in two steps. First, given the forecasting rules, we solve for the indi-
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vidual policy functions using the value function iterations (the inner loop). Then, we update

the forecasting rules by simulating the economy using the individual policy functions (the outer

loop). It is important to once again note that, since our model environment with endogenous

labor supply involves non-trivial factor market clearing, we have to incorporate a step to find

the market-clearing factor prices in the outer loop (Chang and Kim 2014; Takahashi 2014). We

repeat this procedure until the coeffi cients in the forecasting rules converge.

It is straightforward to solve the representative-agent version of the model. For the purposes

of comparison, we keep the same assumptions on the discretization of the TFP shock process as

used in the heterogeneous-agent model. The steady-state equilibrium can then be obtained ana-

lytically. For solutions with aggregate uncertainty, we use the policy function iteration method.

4 Calibration and model properties in steady state

All model specifications are calibrated to U.S. data. A period in the model is a quarter, as

is standard in the business cycle literature. We consider all four of our specifications: Model

(HA-T), Model (HA-N), Model (HA-F), and Model (RA).

Calibrating the baseline model We first describe how we calibrate the baseline specification,

which involve two sets of parameters. The first set is calibrated externally, in line with the

business cycle literature. These parameter values are set in common across all four of our model

specifications. The second set of parameters is calibrated to match the same number of relevant

target statistics.

We begin by describing the first set of externally calibrated parameters. Most of these are

commonly used parameters in the literature. The capital share α is chosen to be consistent with

the empirical capital share value of 0.36, and the quarterly depreciate rate δ is set to 2.5%. In

our model specifications with a binary labor supply choice, the number of hours worked n̄ can

be arbitrarily set since it simply determines the scale of the calibrated disutility parameter B.

By setting n̄ to 1/3– implying that working individuals spend a third of their time endowment

on working– we can calibrate B̃ ≡ Bn̄ directly. Furthermore, the borrowing limit a is set to

−T1/(1 + r), where r is the equilibrium interest rate in steady state.11

In the literature, tax progressivity λp has been estimated using the same functional form we

use. As noted by Holter et al. (2019), the estimate of λp varies quite a lot (from 0.05 to 0.18),

depending on the degree of completeness of the data on government transfers used by researchers.

11This is a form of the natural borrowing limit that ensures that non-working agents are able to pay back their
debts in the next period. In Appendix H, we report a version of the model with a zero borrowing limit, as is
standard in the literature. The main results found in this paper are robust to this variation.
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Because we model progressive transfers separately in addition to progressive taxes, our taxation

parameters in (8) should ideally only capture tax progressivity. As the Internal Revenue Service

(IRS) income tax data used by Guner et al. (2014) do not include welfare transfers, we use

their estimate for λp = 0.053 and λs = 0.911.12 As discussed below, we then use micro data on

the distribution of welfare transfers across households to calibrate the parameters of the transfer

function in (9).

The broad goal of this paper is to study how progressive transfers alter the transmission of

aggregate shocks in the macroeconomy. As a first step, we consider the most standard one– total

factor productivity shocks (Kydland and Prescott 1982)– as an aggregate risk, and employ the

standard values of ρz = 0.95 and σz = 0.007 (Cooley and Prescott 1995). These values are useful

as we can easily compare our results to those from recent related papers, such as Chang and Kim

(2007) and Takahashi (2020), who also use the same TFP shock estimates.13

Next, ρx captures the persistence of idiosyncratic risk in the productivity of households. We

estimate the persistence of idiosyncratic risk using the PSID following a standard method from

the literature (Heathcote et al. 2010), as discussed in Appendix F. The quarterly value based on

this estimate is ρx = 0.9847. The variability of the idiosyncratic risk is calibrated internally and

is explained below. We keep the same values for these two parameters, ρx and σx, for all of the

nested model specifications using heterogeneous agents to control for the underlying idiosyncratic

risk.

The second set of parameters is jointly calibrated. As shown in Table 1, six parameters are

calibrated by matching the same number of target statistics. We now explain how each parameter

is linked to a target statistic.

The first parameter is B̃, which captures the disutility of work, as defined above. The most

relevant target moment is the employment rate of 78.2% from the SIPP sample.14 The next para-

meter β captures the discount factor of households and is targeted to match a quarterly interest

rate of 1%. The next parameter σx governs the variability of idiosyncratic labor productivity.

We calibrate it to match the overall wage dispersion captured by the Gini index of worker wages.

The target statistic is chosen to be 0.359, which is the average Gini wage in 2000 (Heathcote,

12This is the estimate for when the Earned Income Tax Credit (EITC) is included because we do not consider
it in our calibration of welfare transfers. We also considered alternative values for λp, but these did not affect our
quantitative results substantially. This quantitative insignificance of tax progressivity can also be seen explicitly
in our counterfactual exercise in Section 5.3.
13An interesting exercise for the future would be to investigate how our results might carry over in the presence

of other types of aggregate shocks– on top of the standard TFP shocks. The estimation of multiple aggregate
shocks within a model including heterogeneous agents and nonconvexities is an important task yet is diffi cult at
the present moment due to computational costs.
14This value is higher than the employment-population ratio of around 60% that was used in the previous

literature (e.g., Chang and Kim 2007) because we focus here on working-age samples.
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Table 1: Parameter values chosen internally

Parameters Target statistics
Values Description Model Data Description

B̃ = .692 Disutility of work .777 .782 Employment rate
β = .985 Subject discount factor .010 .010 Real interest rate
σx = .126 S.D. of innovations to lnx .360 .359 Wage Gini index
T1 = .0337 Overall transfer size .044 .044 Ratio of Avg (T1 + T2) to output
ωs = .117 Scale of non-flat transfers .0203 .0201 Ratio of Avg T2 to output
ωp = 3.62 Progressivity of transfers 3.07 3.06 E(T2|1st income quintile)/E(T2)

Perri, and Violante 2010).15

The last three parameters– T1, ωs and ωp– govern statistics related to transfers. Recall that

T1 determines the size of universal transfers and ωs determines the scale of non-flat transfers (T2).

Therefore, the first target statistic regarding transfers is set as the total transfers-output ratio

of 4.4%. This is obtained from the time-series average of the ratio of transfers (excluding Social

Security and Medicare) to output over the years 1961-2016 according to the Bureau of Economic

Analysis (BEA) data. The next target is the average government expenditures on social benefits

related to income-security (Table 3.12 from the BEA) over the years 1961—2016– that is, 2.0% of

output.16 Next, ωp shapes the degree of progressivity in government transfers. Our calibration

strategy is to let the model replicate an empirically reasonable degree of transfer progressivity

through ωp, given the value of ωs. For this purpose, we measure the degree of progressivity in

the U.S. transfer programs using the SIPP data. We construct a broad measure of government

transfers, including means-tested programs and social insurance (as detailed in Appendix E).

Since these welfare programs are highly relevant for poor households, we choose as a target

statistic the ratio of the average amount of means-tested transfers received by the first income

quintile to its unconditional mean (3.06) (Yum 2018).

Calibrating alternative model specifications Having explained the calibration strategy

of our baseline model, Model (HA-T), we now describe how we calibrate our nested model

specifications: Model (HA-N), Model (HA-F), and Model (RA). In general, it would be ideal

to minimize the number of parameters to be recalibrated to ensure that our comparison across

15Inequality has been steadily rising in the U.S. In Appendix H, we also consider different values for this target.
16We select the components in order to be consistent with our measurement of transfers from the SIPP data,

as described below. Our classification of transfers is similar to Krusell and Rios-Rull (1999). See Appendix E for
details.
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different model specifications is not driven by different values of parameters. We therefore hold as

constant across the nested specifications the parameters governing the idiosyncratic productivity

risk: ρx and σx. However, it is necessary to recalibrate a subset of the internally calibrated

parameters to ensure that the different model specifications are similar in terms of their target

statistics (e.g., the employment and interest rates in steady state equilibrium).

First, consider Model (HA-N). Because it abstracts from transfers (T1 = ωs = 0), the para-

meter ωp is irrelevant. Thus, we recalibrate B̃ and β to match the employment rate of 78.2% and

the real interest rate of 1%. This leads to values of B̃ = 0.974 and β = 0.9833. Next, consider

Model (HA-F), which shuts down differences in transfers across households. With ωp = 0, dis-

tinguishing between T1 and ωs becomes unnecessary. Therefore, we can calibrate the sum of T1
and ωs to match the total transfers-output ratio of 4.4%. Aside from this, we recalibrate B̃ and

β in the same manner, to yield values of 0.714 and 0.9848, respectively. Finally, and unlike the

heterogeneous-agent models, Model (RA) can be calibrated analytically, as is shown in Appendix

B. As for the parameters related to tax and transfers, we simply use the average tax rate and

the average transfers because progressivity is irrelevant in Model (RA).

Steady state properties Table 1 reports that the baseline model does a good job of matching

the target statistics, and the other nested model specifications do a great job of matching a smaller

number of targets as well. This does not necessarily mean that the model can account for other

relevant statistics. We therefore present the (non-targeted) distributional aspects in steady state.

First, Table 2 summarizes the share of wealth and the employment rates by wealth quintile from

both the model and the data.17 Overall, all heterogeneous-agent model specifications do a good

job of accounting for the shares of wealth held by each wealth quintile.

When we look at the employment rate by wealth quintile reported (also reported in Table

2), we can clearly see that Model (HA-T) does a significantly better job of accounting for the

cross-sectional employment-wealth relationship. In the U.S., the employment rate of the first

wealth quintile is relatively low (70.0%) and is then relatively flat across the other wealth quin-

tiles. This weak inverted-U-shape of the employment rates across wealth quintiles in the data

is relatively well captured in Model (HA-T). On the other hand, Model (HA-N) predicts that

employment falls sharply with wealth, consistent with the findings of Chang and Kim (2007).

In this class of the incomplete-markets framework, the existence of transfers mitigates the ex-

cessively strong precautionary motive for employment among poor households who expect to be

near the borrowing limit in the near future (Yum 2018). Although Model (HA-F) mitigates the

17Table 2 presents statistics on wealth distribution obtained from the 1992—2007 Survey of Consumer Finances
(SCF), as reported by Yum (2018). These statistics from the SCF show a greater concentration of wealth in the
top wealth quintile because it better captures the top of the distribution by over-sampling the rich.

17



Table 2: Characteristics of wealth distribution

Wealth quintile
1st 2nd 3rd 4th 5th

Share of wealth (%)
U.S. Data (SIPP) -2.2 1.2 6.8 18.4 76.3
U.S. Data (SCF) -0.4 1.2 5.1 13.6 80.5
Model (HA-T) -0.0 0.9 5.2 19.7 74.3
Model (HA-N) -0.1 0.1 4.8 20.4 74.8
Model (HA-F) -0.0 0.3 4.9 20.2 74.7

Employment rate (%)
U.S. Data (SIPP) 70.0 77.9 80.9 82.5 79.7
Model (HA-T) 85.3 79.3 84.4 75.2 64.2
Model (HA-N) 100.0 99.2 74.0 66.0 51.9
Model (HA-F) 100.0 92.0 75.2 67.9 54.0

Note: U.S. data are based on the 2001 Survey of Income and Program Participation (SIPP) and the 1992—

2007 Survey of Consumer Finances (SCF) (Yum 2018). Model (HA-T) is the heterogeneous-agent model with

targeted transfers. Model (HA-N) is the heterogeneous-agent model with no transfers. Model (HA-F) is the

heterogeneous-agent model with flat transfers.

negative wealth gradients in employment seen in Model (HA-N), it does not generate the nearly

flat employment rates across wealth quintiles.

Next, Table 3 shows the micro relationship between income or employment status and trans-

fers in the steady state equilibrium. Specifically, the reported numbers are the ratios of average

progressive-component transfers in each income quintile (left panel) or in each employment sta-

tus (right panel) to the unconditional mean progressive-component transfers. In the U.S., there

is a clear negative relationship between income and the amount of income-security transfers.

Note that, in our model, this is a complicated equilibrium object: it is shaped not only by the

parametric assumption on the nonlinear transfer schedule (9) but also by endogenous household

choices (such as those regarding consumption-saving and labor supply). Despite the relatively

simple functional form (9), we can see that our baseline model does an excellent job of replicating

the degree of transfer progressivity in the U.S. Note that, since differences in transfers across

households are removed by design in Model (HA-F), this ratio is one for all income quintiles.

Another way to examine the speed at which transfers phase out is to compute average welfare

transfers by employment status. Although we do not target this directly, our baseline model

generates a substantially higher ratio for non-workers (2.69) relative to workers (0.51), in line

with the data.
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Table 3: Progressivity of income-security transfers

Income quintile Full-time emp.
1st 2nd 3rd 4th 5th Yes No

Conditional mean/unconditional mean
U.S. Data 3.06 0.99 0.52 0.26 0.17 0.48 2.86
Model (HA-T) 3.07 1.07 0.56 0.24 0.06 0.51 2.69
Model (HA-F) 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: The source of U.S. data is the Survey of Income and Program Participation 2001.

We now present results related to the aggregate employment responses in steady state. In

this regard, it is useful to consider the recent empirical evidence of Mui and Schoefer (2020),

who propose a novel concept called the reservation raise. Specifically, a reservation raise, ξ, is

defined as the ratio of the reservation wage, which would make an agent indifferent between the

two choices of working and not working, to the actual (or potential) wage.18 Once computing

these micro reservation raises, we then obtain their cumulative distribution function, denoted by

R(ξ). As detailed in Mui and Schoefer (2020), if we consider a change in the aggregate raise Ξ,

the arc elasticities of extensive-margin labor supply can be defined as

ε(Ξ) =

(
R(1 + Ξ)−R(1)

R(1)

)
/Ξ,

with R(ξ) being interpreted as an aggregate labor supply curve along the extensive margin.

Figure 2 shows ε(Ξ) from Mui and Schoefer (2020) estimated using the representative U.S.

sample as well as its model counterpart.

We find that our baseline model replicates two salient patterns observed in the data. As

noted by Mui and Schoefer (2020), the empirical arc elasticities show that (i) local elasticities

are large with respect to small changes in potential earnings (or reservation raises), and that (ii)

elasticities are smaller with respect to large changes in potential earnings. It is worth noting

that our baseline model not only qualitatively reproduces these two salient patterns, but it also

generates empirically reasonable quantitative responses. Specifically, the elasticities are as high

as three (or above) for very small changes in reservation raises (such as ±5%). Moreover, they

become smaller (at around two) when the change in potential earnings approaches -20%, and

they get even smaller again (at around one) when the change in raises approaches +20%. To sum

up, it is reassuring to see that our model generates an empirically reasonable aggregate labor

18Hence, reservation raises for those who choose to work would be less than one (or ξ < 1), whereas those for
non-workers would be larger than one (or ξ > 1).
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Figure 2: Arc elasticities: data versus model
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Note: The data plot is from Mui and Schoefer (2020) who report the U.S. estimates of arc elasticities. The arc

elasticities are computed, based on the reservation raise distribution.

supply curve, which is a complicated, non-targeted object.19

5 Quantitative analysis

In this section, we report the main business cycle results and illustrate the mechanism underlying

our main quantitative results.

5.1 Business cycle properties

We first compare the business cycle statistics of key macroeconomic variables from model sim-

ulations to those from the data. We filter all the series using the Hodrick—Prescott filter with

a smoothing parameter of 1,600. The U.S. data statistics are computed using the aggregate

data from 1961Q1 to 2016Q4 (see Appendix D for more details). Table 4 summarizes the cycli-

cal volatility of the following key aggregate variables: output Y , consumption C, investment I,

aggregate effi ciency unit of labor L, aggregate hours H, and average labor productivity Y/H.

Volatility is measured using the percentage standard deviation. As is standard in the business

19In Appendix H, we report aggregate labor supply curves and arc elasticities from the other heterogeneous-
agent model specifications.
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Table 4: Volatility of aggregate variables

Model
U.S. data (HA-T) (HA-N) (HA-F) (RA)

σY 1.50 1.27 1.48 1.46 1.83
σC/σY 0.58 0.27 0.28 0.27 0.25
σI/σY 2.96 2.87 2.99 2.99 3.08
σL/σY - 0.50 0.64 0.62 -
σH/σY 0.98 0.73 0.51 0.60 0.80
σY/H/σY 0.52 0.64 0.54 0.57 0.25

Note: See Table 2 or Section 3.2 for the description of the model specifications. Each quarterly variable is logged

and detrended using the Hodrick-Prescott filter with a smoothing parameter of 1600. Volatility is measured by

the percentage standard deviation of each variable. The U.S. statistics are based on aggregate time-series from

1961Q1 to 2016Q4.

cycle literature, our discussion focuses on relative volatility, which is computed as the absolute

volatility of each variable divided by that of output.

The most notable finding in Table 4 is that the high volatility of aggregate hours relative to

output observed in U.S. data (σH/σY = 0.98) is well accounted for by Model (HA-T). Standard

real business cycle models are known to have diffi culties in generating a large relative volatility

of hours without relying on a low curvature of the utility function (or a high Frisch elasticity).

When the stand-in household’s utility function in Model (RA) features zero curvature in labor

supply, it indeed generates a substantial relative volatility of hours (0.80). It is striking that our

baseline model, Model (HA-T), delivers a comparably high volatility of hours (0.73).

The results of Chang and Kim (2006, 2007) suggest that a large relative volatility of hours

obtained through indivisible labor (Rogerson 1988) in Hansen (1985) may not be robust in

incomplete markets economies with heterogeneous households. We can also see this point when

we look at the performance of our Model (HA-N), which delivers a substantially smaller volatility

of hours (0.51). This is the case even though our Model (HA-N) has progressive taxes– an

additional feature relative to Chang and Kim (2006, 2007). However, as noted above, once

heterogeneity in transfers is incorporated in line with the observed patterns in the micro data,

our baseline model shows that the heterogeneous-agent incomplete markets model can perform

similarly to the Hansen—Rogerson economy– in terms of a large volatility of hours over the

business cycle.

The performance of Model (HA-F) reveals that introducing flat transfers into the model can

help obtain a larger relative volatility of hours (0.60). However, this value is still quite far from

its counterpart in Model (HA-T) of 0.73, suggesting that the phasing-out of transfers plays an
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Table 5: Cyclicality of aggregate variables

Model
U.S. data (HA-T) (HA-N) (HA-F) (RA)

Cor(Y,C) 0.81 0.85 0.85 0.84 0.84
Cor(Y, I) 0.90 0.99 0.99 0.99 0.99
Cor(Y, L) - 0.92 0.96 0.96 -
Cor(Y,H) 0.86 0.77 0.95 0.87 0.99
Cor(Y, Y/H) 0.30 0.69 0.95 0.85 0.84
Cor(H, Y/H) -0.23 0.07 0.81 0.48 0.74

Note: See Table 2 or Section 3.2 for the description of the model specifications. Each quarterly variable is logged

and detrended using the Hodrick-Prescott filter with a smoothing parameter of 1600. Cyclicality is measured by

the correlation of each variable with output. The statistics are based on aggregate time-series from 1961Q1 to

2016Q4.

important role. This finding is in line with our analytical results in Proposition 3 of Section 2,

which showed that greater progressivity increases the degree to which aggregate hours fluctuates

with respect to an aggregate shifter (TFP in this case).20

We now move on to the cyclicality of macroeconomic variables– a key focus of this paper. The

first five rows of Table 5 show correlations between output and other aggregate variables. The last

row shows the correlation between aggregate hours and labor productivity. As is well known in the

literature (King and Rebelo 1999), most macroeconomic variables like consumption, investment,

and aggregate hours are highly procyclical in the U.S. Table 5 shows that the strongly positive

correlations with output are fairly well replicated in all of our model specifications, regardless

of the presence of heterogeneity or institutional details. Therefore, one might conclude that

heterogeneity or government transfers are irrelevant, at least with respect to the cyclicality of

macroeconomic variables over the business cycle.

However, we can see that this conclusion is premature when we look at the comovement

of average labor productivity and output. In the U.S., strong procyclicality is not a feature

of average labor productivity (i.e., Cor(Y, Y/H) = 0.30). A related observation is that the

correlation between hours and average labor productivity is even weakly negative (−0.23), often

referred to as the Dunlop—Tarshis observation (Christiano and Eichenbaum 1992). By contrast,

20There are other interesting differences in the volatility of macroeconomic aggregates. For instance, the
volatility of average labor productivity over the business cycle tends to be more consistent with the data in the
heterogeneous-agent models, as compared to Model (RA). Another observation is that the presence of government
transfers tends to reduce the volatility of consumption over the business cycle. This suggests that government
transfers play a role as stabilizers, effectively providing insurance against aggregate risk (e.g., see McKay and
Reis 2016).
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canonical real business cycle models generate highly procyclical average labor productivity, and

thus fail to replicate the limited cyclicality of average labor productivity seen in the data. The

high correlation between output and average labor productivity in Model (RA) (0.84) is also a

manifestation of this weakness.21

The most notable finding in Table 5 is that the strong procyclicality of average labor produc-

tivity is considerably muted (0.69) in Model (HA-T), and as such it is closer to the data (0.30).

In contrast to the existing literature– which tends to rely on the introduction of additional

exogenous shocks (e.g., Benhabib et al. 1991; Christiano and Eichenbaum 1992; Braun 1994;

and Takahashi 2020)– the key to our result is the interaction between household heterogeneity

and transfer progressivity. This in turn generates heterogeneous labor supply behavior across

households, as highlighted in Section 2. The importance of the interplay between household het-

erogeneity and transfers can be seen by the performance of our nested model specifications. Once

we abstract from either household heterogeneity or differences in transfers across households, our

model generates highly procyclical average labor productivity (above 0.8). In particular, when

we abstract from transfers in their entirety (as in Chang and Kim, 2006, 2007) with Model (HA-

N), we generate a very high correlation of 0.95. This implies that heterogeneity per se does not

dampen highly procyclical average labor productivity in real business cycle models.

5.2 Impulse responses

We now investigate the mechanism underlying our quantitative success by using impulse response

functions. Figure 3 shows the impulse responses of the key aggregate variables such as output,

consumption, aggregate hours, average labor productivity, and investment following a persistent

negative 2% shock to z (or TFP) for each of our heterogeneous-agent model specifications. We

follow the simulation-based methodology developed by Koop et al. (1996), as described in detail

in Appendix G (see also Bloom et al. 2018).

The impulse response of aggregate hours clearly confirms that Model (HA-T) (solid line) de-

livers a larger fall in hours than the nested heterogeneous-agent models– Model (HA-N) (dashed

line) and Model (HA-F) (dotted line)– despite the fact that its output declines the least strongly

on impact. Another important difference is the impulse responses of average labor productivity.

In Model (HA-N), the dynamics of average labor productivity closely follow the pattern of output

since it falls quite sharply on impact. This explains the very high correlation of Y/H with Y in

Table 5. When flat transfers are present in Model (HA-F), we see that the overall decrease in

average labor productivity is mitigated. In Model (HA-T), the magnitude of the fall in average

21These correlations would become even higher in models without indivisibility of labor (Hansen 1985) or in
the absence of labor taxes.
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Figure 3: Impulse responses of macroeconomic aggregates
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Note: TFP denotes total factor productivity. The figures display the IRFs of macroeconomic aggregates to a

negative 2 percent TFP shock with persistence ρz.

labor productivity is even smaller, despite it having the largest fall in hours.

To understand the underlying cause of these differences in aggregate dynamics, it is useful to

investigate the impulse responses at a more disaggregated level.22 Specifically, in each period, we

categorize households into three almost evenly distributed groups: (i) the low productivity group

{xi}4i=1; (ii) the mid productivity group {xi}6i=5; and (iii) the high productivity group {xi}10i=7.
Figure 4 plots the impulse responses of hours by productivity following the same negative shocks,

whereas Figure 5 plots its counterparts with respect to positive TFP shocks.

There are several important patterns worth noting. First, there is a relatively small difference

in labor supply responses among the mid productivity group across the different model specifica-

tions. On the other hand, the response of the high productivity group is clearly weaker in Model

(HA-T) compared to the other heterogeneous-agent models. Second, recall that Proposition 1

from our simple model implies that agents with lower potential earnings tend to be more elastic in

22Another obvious candidate is the dynamics of equilibrium prices. Figure A5 displays changes in the market-
clearing wage per effi ciency units of labor and in real interest rates following the same negative TFP shock for
each of our model specifications. It appears as though the difference between these specifications is not substantial
among the heterogeneous agent models, suggesting that our main results are not driven mainly by the difference
in equilibrium price dynamics.
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Figure 4: Impulse responses of total hours by productivity
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Note: Households are grouped into low productivity (below median), mid productivity (median), and high pro-

ductivity (above median). The figures display impulse responses for employment in each group to a negative 2

percent TFP shock with persistence ρz.

their labor supply. In fact, this pattern clearly applies to Model (HA-T), which generates greater

magnitudes of changes in labor supply among low productivity groups. This heterogeneity of

labor supply responses explains why Model (HA-T) is able to reduce the cyclicality of average

labor productivity.

However, this monotonous relationship between elasticity and individual productivity breaks

down for the low productivity group, especially in Model (HA-N). This exceptionally inelastic

employment response is related to the results of Domeij and Floden (2006) and of Yum (2018).

Specifically, both of these papers consider incomplete markets models without public insurance

and show that wealth-poor households who lack self-insurance have precautionary labor supply

motives at the intensive margin (Domeij and Floden 2006) and at the extensive margin (Yum

2018). Such precautionary motives can dominate the standard intertemporal substitution motive,

which in turn could weaken the responses of hours with respect to a persistent fall in wages.

This inelastic labor supply among the low productivity group provides a key reason for both

the lower volatility of total hours and the highly procyclical average labor productivity seen

in Model (HA-N). This illustrates why heterogeneity per se is not suffi cient to explain our key

results in incomplete markets environments. The impulse responses from Model (HA-F)– which

provides uniform transfers– show that the low productivity group has now become responsive to

aggregate TFP changes though its magnitude is weak.

The precautionary motive would be less relevant when positive aggregate shocks hit the

economy since they would move agents away from the borrowing limit. Figure 5 shows that,

with respect to positive aggregate shocks, low productivity agents in Model (HA-T) do not show
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Figure 5: Impulse responses of total hours by productivity with respect to positive TFP shocks
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muted responses on impact. This is in contrast to their sluggish immediate responses following

negative aggregate shocks in Figure 4. Since negative shocks tend to move agents toward the

borrowing limit, they raise precautionary motives and thus weaken intertemporal substitution

motives.23

5.3 Progressivity and aggregate fluctuations

We now use our baseline model to conduct counterfactual exercises about how higher progressivity

affects aggregate fluctuations. The first counterfactual adjusts the parameters in the transfer

function so that higher overall tax-and-transfer progressivity is achieved by affecting low-income

households disproportionately. We also consider a case where we raise the progressivity in the tax

function while keeping the transfer function unchanged. To control for the strength of each policy

reform, we ensure that each policy increases the difference between the income Gini coeffi cients

before and after taxes and transfers by 2 percentage points, as compared to the baseline model.24

Table 6 reveals that the first counterfactual exercise indeed increases the amount of transfers

going to low-income households with a higher rate at which transfers are phased out. Conse-

23Figure 5 also reveals that the overall magnitude of employment responses features asymmetry. Specifically,
the overall responses are stronger with respect to negative shocks, as compared to those with respect to positive
shocks. This is in fact in line with the distribution of arc-elasticities, based on reservation raises: Figure 2 shows
that downward adjustments induce greater elasticities (above two) relative to upward adjustments (around one).
24Specifically, tax progressivity is increased by raising λp by 80% (or λp = 0.0954). A higher λp tends to raise

overall tax revenues, and this works to increase redistribution. As for transfer progressivity, we adjust both ωp
and ωs simultaneously. This is because a higher ωp tends to reduce the overall size of transfers, which works
against an increase in redistribution. The required percentage increase is 25%.
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Table 6: Effects of progressivity on the steady-state economy and aggregate fluctuations

Baseline Higher progressivity
Model Transfer Tax
(HA-T) function function

Steady state
Employment rate (%)

Overall 77.7 71.2 78.4
By wealth quintile

1st 85.3 50.0 92.7
2nd 79.3 83.8 75.3
3rd 84.4 80.6 85.1
4th 75.2 76.8 74.6
5th 64.2 64.6 64.2

- Cond. mean/uncond. mean of T2 by income quintile
1st 3.07 3.61 3.03
2nd 1.07 0.92 1.09
3rd 0.56 0.34 0.57
4th 0.24 0.12 0.25
5th 0.06 0.02 0.06

Business cycles
σY 1.27 1.37 1.29

σH/σY 0.73 1.09 0.75
Cor(Y, Y/H) 0.69 0.19 0.66
Cor(H,Y/H) 0.07 -0.44 0.05

Note: Each counterfactual exercise leads to the same Gini of after-tax-and-transfer income using each policy

instrument.

quently, the steady-state employment rates of wealth-poor households are affected heavily. On

the other hand, the second counterfactual exercise has more balanced effects on the employment

rates across the distribution, and the pattern of transfers across the income distribution remain

nearly unchanged.

Having checked the steady state effects, we now move on to business cycle implications. Table

6 reports that the first counterfactual exercise reduces the cyclicality of average labor produc-

tivity and raises the volatility of total hours quite substantially. On the other hand, the second

counterfactual exercise has limited effects on aggregate labor market dynamics. Average labor

productivity becomes slightly less procyclical and the volatility of hours increases marginally.25

25In Figure A3, we plot aggregate labor supply curves (or reservation raise cumulative distributions) and their
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Overall, the above results reinforce our conclusion in the previous subsection that changes in the

rate at which transfers are phased out are quantitatively more important than changes in average

tax progressivity when it comes to aggregate labor market fluctuations with labor supply at the

extensive margin.

6 Microeconomic evidence of heterogeneity in the exten-

sive margin labor supply responses

As shown in the previous sections, the key mechanism of our model relies on heterogeneous labor

supply responses. More precisely, households with low potential earnings are considerably more

elastic in adjusting their labor supply at the extensive margin, which weakens a highly procyclical

average labor productivity and enlarges the volatility of aggregate hours worked over the business

cycle. In this section, we empirically document heterogeneity in labor supply responses to verify

whether our key model mechanism exists in the micro data.26

Specifically, we exploit the panel structure of the PSID to explore whether extensive margin

labor supply responses differ as a function of hourly wage. This panel structure is useful because

we can keep track of the same people and observe their labor supply decisions over time. Because

labor supply changes can be measured in different ways and can be shaped by forces at different

levels (i.e., idiosyncratic vs. aggregate), we consider two approaches. The first approach computes

the probability of the extensive margin labor supply adjustment for each individual and illustrates

how it differs by wage. The second approach focuses on differences in the magnitude of full-time

employment rate changes across wage groups during the last six recessions.

The first approach requires us to have relatively long time-series observations for each indi-

vidual to obtain a consistent estimate of the adjustment probability, based on individual-level

flow data.27 First, let us fix the year at j, and denote i as an individual index, and t the year

when the individual is observed. We define the extensive margin adjustment based on a full-time

employment indicator Ei,t: an individual i in year t is in full-time employment (i.e., Ei,t = 1) if

the annual number of hours worked is greater than 1,000.28 Then, we define a binary switching

corresponding arc elasticities for the two counterfactual experiments, which corroborate our cyclical volatility
results.
26There is limited empirical evidence of heterogeneity in labor supply responses at the extensive margin across

wage groups. See Kydland (1984) and Juhn et al. (1991) for earlier evidence. Hoynes et al. (2012) provide
evidence of heterogeneity in employment rates across other (potentially related) dimensions, such as race, gender,
age, and education.
27Since the frequency of the PSID survey had been annual until 1997 and became biannual from 1999 onward,

we use only samples observed annually from the 1969—1997 waves.
28The results in this section are quite robust to alternative threshold values for the full-time employment

variable. In Appendix I, we report the results when we use 1,500 hours as a full-time threshold value.
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Table 7: Probability of extensive margin adjustment, by wage quintile

The length of tracking time T
5 years 10 years 15 years

Wage quintile Switches Switches Switches
in base year All Pos only Neg only All Pos only Neg only All Pos only Neg only

1st .097 .061 .036 .075 .048 .027 .066 .042 .024
2nd .051 .030 .020 .042 .025 .017 .038 .022 .015
3rd .038 .020 .018 .032 .018 .014 .031 .017 .013
4th .034 .016 .018 .028 .014 .015 .026 .012 .014
5th .037 .018 .019 .032 .015 .017 .030 .014 .016

Base years 1969—1993 (J = 25) 1969—1988 (J = 20) 1969—1983 (J = 15)
Avg. no. obs 1,677 1,189 834
in base years
Total no. obs. 41,920 23,783 12,514
Avg. age 40.2 41.0 41.5

Note: See text for the definition of the switching probability reported in this table. Numbers in parentheses show

the number of base years. We use samples whose age is between 22 and 64 (inclusive) and who are heads and are

not self-employed. "All" refers to the baseline estimates when using both positive and negative switches, whereas

"pos only" and "neg only" use only positive ones (i.e., Ei,t = 1 and Ei,t−1 = 0) and only negative ones (i.e.,

Ei,t = 0 and Ei,t−1 = 1), respectively.

variable Si,t such that it equals one if Ei,t 6= Ei,t−1 and it equals zero otherwise. We exclude

transitions from Ei,t−1 = 1 to Ei,t = 0 if the individual has a non-zero unemployment spell in

period t in order to rule out transitions caused by layoffs.

Note that, given the length of time spent tracking each individual T, there are T − 1 counts

of Si,t for each individual i. Once we take the average over time, we obtain the individual-

specific probability of an extensive-margin adjustment with an annual frequency (i.e., pi,j ≡
1

T−1
∑j+T−1

t=j+1 Si,t). As we are interested in differences across the wage distribution, we compute

pqj , which is defined as the conditional mean of pi,j for the wage quintile bin of each individual

q ∈ {1, 2, ..., 5} determined in the base year j.
Because different values for the length of time spent tracking each individual entails a trade-

off, we consider three variants: T ∈ {5, 10, 15}. On the one hand, a larger number is beneficial
because we are more likely to have a consistent estimate of the adjustment probability at the

individual level. On the other hand, a longer tracking time implies a tighter restriction on

the samples– because we keep only samples that were observed for T consecutive years. Given
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the value of T , we compute the estimates of {pqj}5q=1 by changing the base year j. That way,
we attempt to mitigate variations due to differences in the initial wage distribution, which is

potentially affected by business cycle fluctuations. The reported values in Table 7 are the mean

switching probabilities for each wage quintile averaged across the base years, pq ≡ 1
J

∑
pqj , where

the number of base years J is reported in parentheses.

Table 7 reveals a clear pattern: the individual-level probability of adjusting the extensive

margin is significantly higher among low-wage workers. For instance, when T = 5, the probability

of switching to or from full-time employment among the first wage quintile is 9.7% (the annual

frequency). In particular, we can see that this probability tends to decrease with wage. For

the third to fifth quintiles, this probability is relatively flat at approximately 3.5%. When T

increases, we also find that the key pattern of extensive margin adjustment probabilities across

wage quintiles is still present. However, because the samples become slightly older and T becomes

longer, we also see that their switching probabilities generally become lower.

We also compute these statistics using only either positive switches (Ei,t − Ei,t−1 > 0) or

negative switches (Ei,t−Ei,t−1 < 0). Table 7 shows that negative wage gradients in the probability

of full-time employment adjustments are present in both cases. Interestingly, positive switches

feature not only higher adjustment probabilities but also a quantitatively larger negative wage

gradient, showing that the overall gradient is more strongly driven by such positive adjustments.

The above exercise is based on long-run information regarding labor market flows at the

individual level. The next empirical exercise instead uses the differences in magnitude of full-

time employment level changes across wage groups during recessions. Specifically, we choose six

recessions and for each recession we choose a peak year and a trough year, as guided by the

cyclical component of quarterly real GDP per capita (Figure A1). Our definition of peak and

trough years is limited by the frequency of the PSID because the data set was available annually

until 1997 and only biannually since 1999. Therefore, our choice is also based on declines in

aggregate employment during each recession event– according to our micro samples from the

PSID. The resulting year combinations for each recession are shown in Table 8.

Next, we compute the conditional mean of full-time employment by wage quintile in the peak

year for each recession by 1
Nq
peak

∑
iE

q
i,peak, where N

q
peak is the number of observations in wage

quintile bin q during the peak year. We then measure the percentage changes in the full-time

employment rate by wage quintile in the corresponding trough year. It is important to note that

we keep the set of households in each wage group fixed by assigning a wage quintile to each

household in the peak year. That way, our measured changes by wage quintile are not affected

by compositional changes, but are rather based on changes from within the same households.

Table 8 clearly shows that the employment rate fell most sharply in the first and second

wage quintiles during all of the recessions, and that the magnitude of these declines tends to be
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Table 8: Full-time employment changes in recessions, by wage quintile

Recession
1969—71 1973—76 1980—83 1990—92 2000—02 2006—10

Wage quintile
in peak year

1st -7.1 -10.1 -9.8 -8.7 -10.0 -17.2
2nd -3.2 -7.4 -4.5 -6.3 -5.6 -12.9
3rd -3.7 -7.0 -5.2 -4.6 -3.0 -11.2
4th -4.7 -4.5 -5.9 -5.4 -4.8 -10.4
5th -0.9 -5.7 -4.9 -4.6 -2.2 -5.8

No. obs. 1,655 1,756 2,007 2,166 2,924 2,802

Note: The full-time employment threshold is set to 1,000 annual hours. The year ranges denote the peak and

trough years of each recession. Reported values are percentage changes in the full-time employment rate by wage

quintiles (in the peak year of each recession) following the same set of individuals.

smaller among the higher wage quintiles. For example, the full-time employment rate among the

first wage quintile during the last recession (i.e., the Great Recession) fell by 17.2%, whereas the

counterpart among the fifth wage quintile fell by only 5.8%. This pattern of full-time employment

changes by wage quintiles is quite robust across different recessions despite variations in overall

magnitude.29

One may be concerned about the possibility that the wage gradient of full-time employment

changes found in Table 8 is driven largely by the demand channel of the firms, and that this may

affect household employment status differentially across the wage distribution. To alleviate this

concern, we also use the information from the PSID data about unemployment spells (available

since the 1976 wave or the year of 1975) and exclude samples that experienced any unemployment

spells in either the peak year or the trough year. We thereby attempt to rule out the effects

caused by differential layoff probabilities across the wage distribution, although the number of

observations in each recession decreases because of this additional sample restriction. Table A5

shows that although the magnitudes of full-time employment changes are somewhat weaker, the

magnitude is negatively related to wage quintiles during most recessions.

Although the above two approaches are designed to capture different aspects of labor supply

adjustments, they yield consistent results: the employment adjustments of lower-wage workers

are more volatile. Both of these empirical findings are therefore consistent with the pattern of

29Note that the overall magnitude of the fall in employment is relatively greater in the recessions of 1973—76,
1980—83 and 2006—10. This finding is, in fact, consistent with the relatively larger amplitudes of these recessions,
as shown in Figure A1. This provides some external validation for our micro samples.
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heterogeneity in labor supply responses seen in the baseline model. Nevertheless, we would also

like to stress that the results in this section are only suggestive since we cannot rule out other

possible demand-related effects from being behind the observed heterogeneous patterns. For

example, they could be consistent with intrasectoral changes in the quality of workers made by

firms (Ohanian 2001). Alternatively, there might be disproportionately more low-wage workers

in those industries that are more vulnerable to the effects of the business cycle (Hoynes et al.

2012), or labor hoarding might be differential across wage groups.

7 Conclusion

In this paper, we have explored the interplay of household heterogeneity and tax-and-transfer

progressivity in shaping the dynamics of macroeconomic aggregates over the business cycle. Using

analytical results obtained from a stylized static model of the extensive margin labor supply, we

first presented the key insight that higher progressivity would strengthen negative wage gradients

in employment responses to aggregate shifters. Using a general equilibrium business cycle model

with household heterogeneity, we have shown that micro-level heterogeneity substantially shapes

the dynamics of aggregate labor market variables when heterogeneity interacts with progressive

transfers. In particular, our baseline model delivers less procyclical average labor productivity

when compared to the nested models that are similar to standard real business cycle models. At

the same time, it retains the success of the canonical representative-agent indivisible labor supply

model in generating a large volatility of aggregate hours without the assumptions of lotteries and

perfect consumption insurance (Rogerson 1988). Our counterfactual analysis shows that in the

U.S. tax and transfer system, the rate at which transfers are phased out is quantitatively very

important for understanding labor supply along the extensive margin.

There are several future research questions that follow naturally from our study. One inter-

esting and novel result that we highlighted in this paper is that the effects of higher progressivity

can be quite different depending on which part of the income distribution is more affected by

the fiscal change. A straightforward application would be to design a tax-and-transfer system

that takes into account the welfare costs of business cycles in the presence of heterogeneous

agents (e.g., Krusell et al. 2009). Second, although the current paper focuses on the total fac-

tor productivity shock, it would be interesting to explore how other types of aggregate shocks

(such as monetary policy shocks) would be transmitted differently in our framework. Finally,

our paper introduces some theoretical and quantitative mechanisms suggesting that changes in

progressivity at the bottom of the income distribution (e.g., welfare transfers) might be behind

the vanishing procyclicality of average labor productivity, as documented by Galí and van Rens
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(2021).30 Formal investigations of these changing relationship are out of the scope of the current

paper, but they would nonetheless be highly valuable to address in future work.

References

Ahn, SeHyoun, Greg Kaplan, Benjamin Moll, Thomas Winberry, and Christian Wolf. 2017.

"When Inequality Matters for Macro and Macro Matters for Inequality." In NBER Macro-

economics Annual 2017, Volume 32: University of Chicago Press.

Aiyagari, S. Rao. 1994. "Uninsured Idiosyncratic Risk and Aggregate Saving." The Quarterly

Journal of Economics 109 (3): 659-684.

Benabou, Roland. 2002. "Tax and Education Policy in a heterogeneous-agent Economy: What

Levels of Redistribution Maximize Growth and Effi ciency?" Econometrica 70 (2): 481-517.

Benhabib, Jess, Richard Rogerson, and Randall Wright. 1991. "Homework in Macroeconomics:

Household Production and Aggregate Fluctuations." Journal of Political Economy 6: 1166-

1187.

Ben-Shalom, Yonatan, Robert A. Moffi tt, and John Karl Scholz. 2011."An Assessment of the

Effectiveness of Anti-Poverty Programs in the United States." NBER Working Papers No.

17042.

Bick, Alexander and Nicola Fuchs-Schündeln. 2017. "Taxation and Labour Supply of Married

Couples Across Countries: A Macroeconomic Analysis." The Review of Economic Studies 85

(3): 1543-1576.

Bils, Mark J. 1985. "Real Wages Over the Business Cycle: Evidence from Panel Data." Journal

of Political Economy 93 (4): 666-689.

Bloom, Nicholas, Max Floetotto, Nir Jaimovich, Itay Saporta-Eksten, and Stephen J. Terry.

2018. "Really Uncertain Business Cycles." Econometrica 86 (3): 1031-1065.

Braun, R. Anton. 1994. "Tax Disturbances and Real Economic Activity in the Postwar United

States." Journal of Monetary Economics 33 (3): 441-462.

Chang, Yongsung and Sun-Bin Kim. 2014. "Heterogeneity and Aggregation: Implications for

Labor-Market Fluctuations: Reply." The American Economic Review 104 (4): 1461-1466.

30There has been a steady increase in the size of welfare programs according to the BEA data. For example,
the total government social benefits we considered in our quantitative model (cash transfers, and food, medical,
and childcare support to low income households) have increased relative to GDP from 0.5% in the 1960s to 3.5%
in the early 2010s.

33



– – – . 2007. "Heterogeneity and Aggregation: Implications for Labor-Market Fluctuations."

American Economic Review 97 (5): 1939-1956.

– – – . 2006. "From Individual to Aggregate Labor Supply: A Quantitative Analysis Based on

a Heterogeneous Agent Macroeconomy." International Economic Review 47 (1): 1-27.

Chang, Yongsung, Sun-Bin Kim, Kyooho Kwon, and Richard Rogerson. 2019. "Individual and

Aggregate Labor Supply in a Heterogeneous Agent Economy with Intensive and Extensive

Margins." International Economic Review, 60 (1): 3-24.

Chang, Yongsung, Sun-Bin Kim, and Frank Schorfheide. 2013. "Labor-Market Heterogeneity,

Aggregation, and Policy (in) Variance of DSGE Model Parameters." Journal of the European

Economic Association 11: 193-220.

Christiano, Lawrence J. and Martin Eichenbaum. 1992. "Current Real-Business-Cycle Theories

and Aggregate Labor-Market Fluctuations." American Economic Review 82 (3): 430-450.

Conesa, Juan Carlos, Sagiri Kitao, and Dirk Krueger. 2009. "Taxing Capital? Not a Bad Idea

After all!" American Economic Review 99 (1): 25-48.

Doepke, Matthias and Michele Tertilt. 2016. "Families in Macroeconomics." In Handbook of

Macroeconomics. Vol. 2, 1789-1891: Elsevier.

Domeij, David and Martin Floden. 2006. "The Labor-Supply Elasticity and Borrowing Con-

straints: Why Estimates are Biased." Review of Economic Dynamics 9 (2): 242-262.

Ferrière, Axelle and Gaston Navarro. 2022. "The Heterogeneous Effects of Government Spending:

It’s all about Taxes." Unpublished Manuscript.

Ferriere, Axelle, Philipp Grubener, Gaston Navarro, and Oliko Vardishvili. 2022. "On the optimal

design of transfers and income-tax progressivity." Unpublished Manuscript.

Fleck, Johannes, Jonathan Heathcote, Kjetil Storesletten, and Giovanni L. Violante. 2021. "Tax

and Transfer Progressivity at the US State Level." Unpublished Manuscript.

Galí, Jordi and Thijs Van Rens. 2021. "The Vanishing Procyclicality of Labour Productivity."

The Economic Journal 131 (633): 302-326.

Guner, Nezih, Remzi Kaygusuz, and Gustavo Ventura. 2020. "Child-Related Transfers, House-

hold Labour Supply, and Welfare." The Review of Economic Studies 87 (5): 2290-2321.

– – – . 2014. "Income Taxation of US Households: Facts and Parametric Estimates." Review of

Economic Dynamics 17 (4): 559-581.

Hansen, Gary D. 1985. "Indivisible Labor and the Business Cycle." Journal of Monetary Eco-

nomics 16 (3): 309-327.

34



Hagedorn, Marcus and Iourii Manovskii. 2008. "The Cyclical Behavior of Equilibrium Unem-

ployment and Vacancies Revisited." American Economic Review 98 (4): 1692-1706.

Heathcote, Jonathan. 2005. "Fiscal Policy with Heterogeneous Agents and Incomplete Markets."

The Review of Economic Studies 72 (1): 161-188.

Heathcote, Jonathan, Fabrizio Perri, and Giovanni L. Violante. 2010. "Unequal We Stand: An

Empirical Analysis of Economic Inequality in the United States, 1967—2006." Review of Eco-

nomic Dynamics 13 (1): 15-51.

Heathcote, Jonathan, Kjetil Storesletten, and Giovanni L. Violante. 2020. "How should Tax

Progressivity Respond to Rising Income Inequality?" Journal of the European Economic

Association 18 (6): 2715-2754.

– – – . 2014. "Optimal Tax Progressivity: An Analytical Framework." The Quarterly Journal

of Economics 132 (4): 1693-1754.

– – – . 2010. "The Macroeconomic Implications of Rising Wage Inequality in the United States."

Journal of Political Economy 118 (4): 681-722.

Holter, Hans A., Dirk Krueger, and Serhiy Stepanchuk. 2019. "How do Tax Progressivity and

Household Heterogeneity Affect Laffer Curves?" Quantitative Economics 10 (4): 1317-1356.

Hoynes, Hilary, Douglas L. Miller, and Jessamyn Schaller. 2012. "Who Suffers during Reces-

sions?" The Journal of Economic Perspectives 26 (3): 27-47.

Hubbard, R. Glenn, Jonathan Skinner, and Stephen P. Zeldes. 1995. "Precautionary Saving and

Social Insurance." Journal of Political Economy: 360-399.

Huggett, Mark. 1993. "The Risk-Free Rate in Heterogeneous-Agent Incomplete-Insurance

Economies." Journal of Economic Dynamics and Control 17 (5): 953-969.

Juhn, Chinhui, Kevin M. Murphy, and Robert H. Topel. 1991. "Why has the Natural Rate

of Unemployment Increased Over Time?" Brookings Papers on Economic Activity 1991 (2):

75-142.

Khan, Aubhik and Julia K. Thomas. 2008. "Idiosyncratic Shocks and the Role of Nonconvexities

in Plant and Aggregate Investment Dynamics." Econometrica 76 (2): 395-436.

King, Robert G. and Sergio T. Rebelo. 1999. "Resuscitating Real Business Cycles." Handbook of

Macroeconomics 1: 927-1007.

Koop, Gary, M. Hashem Pesaran, and Simon M. Potter. 1996. "Impulse Response Analysis in

Nonlinear Multivariate Models." Journal of Econometrics 74 (1): 119-147.

35



Krueger, Dirk, Kurt Mitman, and Fabrizio Perri. 2016. "Macroeconomics and Household Het-

erogeneity." Handbook of Macroeconomics 2: 843-921.
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Online Appendix

A Proofs in Section 2

Proof of Proposition 1 Assume Ti = 0. Then, we can rewrite

ai = zxi.

Therefore,

Ni = 1− exp(−zxi)

Given this, note that

εi ≡
∂Ni

∂z

z

Ni

= xi exp(−zxi)
z

1− exp(−zxi)

=
zxi exp(−zxi)
1− exp(−zxi)

For expositional convenience, assume that x is continuous for now.

ε(x) =
zx exp(−zx)

1− exp(−zx)

∂ε(x)

∂x
=

[z exp(−zx)− z2x exp(−zx)] [1− exp(−zx)]− zx exp(−zx) [z exp(−zx)]

[1− exp(−zx)]2

=
exp(−zx)z [1− zx] [1− exp(−zx)]− z2x exp(−zx) [exp(−zx)]

[1− exp(−zx)]2

=
z exp(−zx) {1− zx− exp(−zx)}

[1− exp(−zx)]2

Since exp(−zx) < 1 for all z, x > 0,

∂ε(x)

∂x
=
z exp(−zx) (1− zx− exp(−zx))

[1− exp(−zx)]2
<
z exp(−zx) (1− zx− 1)

[1− exp(−zx)]2

=
z exp(−zx) (−zx)

[1− exp(−zx)]2
< 0.
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Proof of Proposition 2 Since

∂Nl

∂z
= exp(−al)(1− λ),

∂Nh

∂z
= exp(−ah)(1 + λ).

we have

∂

∂ω

(
∂Nl

∂z

)
= exp(−al)(1− λ)Tλ > 0,

∂

∂ω

(
∂Nh

∂z

)
= − exp(−ah)(1 + λ)Tλ < 0.

Also, note that

∂Nl

∂ω
= − exp(−al)Tλ < 0

∂Nh

∂ω
= exp(−al)Tλ > 0.

Proof of Proposition 3 Since

ε ≡ ∂N

∂z

z

N

=

(
πl
∂Nl

∂z
+ πh

∂Nh

∂z

)
z

πlNl + πhNh

the aggregate labor supply elasticity is given by

ε = z
exp(−al)(1− λ) + exp(−ah)(1 + λ)

2− exp(−al)− exp(−ah)

where

al = z(1− λ)− T − Tωλ
ah = z(1 + λ)− T + Tωλ.
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Then, we have

∂ε

∂ω
= z

[exp(−al)(1− λ)(−1)(−Tλ) + exp(−ah)(1 + λ)(−1)Tλ] [2− exp(−al)− exp(−ah)]
− [exp(−al)(1− λ) + exp(−ah)(1 + λ)] [− exp(−al)(−1)(−Tλ)− exp(−ah)(−1)Tλ]

[2− exp(−al)− exp(−ah)]
2

= zTλ

[exp(−al)(1− λ)− exp(−ah)(1 + λ)] [2− exp(−al)− exp(−ah)]
+ [exp(−al)(1− λ) + exp(−ah)(1 + λ)] [exp(−al)− exp(−ah)]

[2− exp(−al)− exp(−ah)]
2

The sign of ∂ε
∂ω
is equal to that of the numerator, which can be rewritten as

Numerator = 2(1− λ) exp(−al)− (1− λ) exp(−2al)− (1− λ) exp(−ah − al)
− 2(1 + λ) exp(−ah) + (1 + λ) exp(−ah − al) + (1 + λ) exp(−2ah)

+ (1− λ) exp(−2al)− (1− λ) exp(−ah − al)
+ (1 + λ) exp(−ah − al)− (1 + λ) exp(−2ah)

= 2 [(1− λ) exp(−al)− (1 + λ) exp(−ah) + 2λ exp(−ah − al)] .

Letting θ = (1−λ)
(1+λ)

, we can rewrite

2(1 + λ)

[
(1− λ)

(1 + λ)
exp(−al)− exp(−ah) +

2λ

(1 + λ)
exp(−ah − al)

]
= 2(1 + λ) [θ exp(−al) + (1− θ) exp(−ah − al)− exp(−ah)] .

Since exp(−x) is convex, we know

θ exp(−al) + (1− θ) exp(− (ah + al)) > exp (−{θal + (1− θ) (ah + al)})
= exp (−{(1− θ) ah + al}) .

Applying this inequality, we have

Numerator = 2(1 + λ) [θ exp(−al) + (1− θ) exp(−ah − al)− exp(−ah)]
> 2(1 + λ) [exp (−{(1− θ) ah + al})− exp(−ah)] ≥ 0
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if and only if

(1− θ) ah + al ≤ ah

al ≤ θah

(1 + λ) [z(1− λ)− T − Tωλ] ≤ (1− λ) [z(1 + λ)− T + Tωλ]

z(1 + λ)(1− λ)− (1 + λ)T − (1 + λ)Tωλ ≤ z(1 + λ)(1− λ)− (1− λ)T + (1− λ)Tωλ

−(1 + λ)− (1 + λ)ωλ ≤ −(1− λ) + (1− λ)ωλ

−1 ≤ ω

which is always satisfied.

Proof of Proposition 4 Note that

χ0 =
(1− λ) (1− exp(−al)) + (1 + λ) (1− exp(−ah))

2− exp(−al)− exp(−ah)

=
1− λ− exp(−al) + λ exp(−al) + 1 + λ− exp(−ah)− λ exp(−ah)

2− exp(−al)− exp(−ah)

=
2− (1− λ) exp(−al)− (1 + λ) exp(−ah)

2− exp(−al)− exp(−ah)
.

Therefore, we have

∂χ0
∂z

=

[
(1− λ)2 exp(−al) + (1 + λ)2 exp(−ah)

]
[2− exp(−al)− exp(−ah)]

(2− exp(−al)− exp(−ah))
2

− [2− (1− λ) exp(−al)− (1 + λ) exp(−ah)] [exp(−al) (1− λ) + exp(−ah) (1 + λ)]

(2− exp(−al)− exp(−ah))
2

=
1

(2− exp(−al)− exp(−ah))
2



2 (1− λ)2 exp(−al) + 2 (1 + λ)2 exp(−ah)
− (1− λ)2 exp(−2al)− (1 + λ)2 exp(−ah − al)
− (1− λ)2 exp(−ah − al)− (1 + λ)2 exp(−2ah)

−2 (1− λ) exp(−al)− 2 (1 + λ) exp(−ah)
+ (1− λ)2 exp(−2al) + (1 + λ) (1− λ) exp(−ah − al)
+ (1 + λ) (1− λ) exp(−ah − al) + (1 + λ)2 exp(−2ah)


=

2λ(λ− 1) exp(−al) + 2λ(λ+ 1) exp(−ah)− 4λ2 exp(−ah − al)
(2− exp(−al)− exp(−ah))

2

=
2λ {(λ− 1) exp(−al) + (λ+ 1) exp(−ah)− 2λ exp(−ah − al)}

(2− exp(−al)− exp(−ah))
2 < 0.
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Proof of Proposition 5 Define

Φ(ω) ≡ log

(
∂χ0
∂z

)
.

Since the log transformation preserves monotonicity, it suffi ces to show that Φ′(ω) < 0. As

Φ(ω) = log 2λ+ log {(λ− 1) exp(−al) + (λ+ 1) exp(−ah)− 2λ exp(−ah − al)}
− 2 log (2− exp(−al)− exp(−ah))

we have

Φ′(ω) =
−Tλ(λ− 1) exp(−al) + Tλ(λ+ 1) exp(−ah)

(λ− 1) exp(−al) + (λ+ 1) exp(−ah)− 2λ exp(−ah − al)

− 2
Tλ exp(−al)− Tλ exp(−ah)

2− exp(−al)− exp(−ah)

=

Tλ(1− λ) exp(−al) + Tλ(λ+ 1) exp(−ah)︸ ︷︷ ︸
positive

(λ− 1) exp(−al) + (λ+ 1) exp(−ah)− 2λ exp(−ah − al)︸ ︷︷ ︸
negative

− 2

Tλ [exp(−al)− exp(−ah)]︸ ︷︷ ︸
positive

2− exp(−al)− exp(−ah)︸ ︷︷ ︸
positive

< 0.

B Representative-agent (RA) model

We first describe the environment of Model (RA). At the beginning of each period, the stand-in

household holds the assets of that period k. The aggregate state variables are the aggregate

capital K and the aggregate TFP shock zk, with the latter following the same stochastic process

as in the baseline model. Taking the real wage rate w(K, zk), the real interest rate r(K, zk), and

the aggregate law of motion Γ(K, zk) as given, the dynamic decision problem of the representative

household can be written as the following functional equation:

V (k,K, zk) = max
k′≥0,c≥0
n∈[0,1]

{
log c−Bn+ β

Nz∑
l=1

πzklV (k′, K ′, z′l)

}
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subject to c+ k′ ≤ (1− τl)w(K, zk)n+ (1 + r(K, zk))k + T

K ′ = Γ(K, zk)

The household maximizes utility by choosing its optimal consumption c, the next period’s cap-

ital k′, and its labor supply n. The utility of the stand-in household is linear with respect to

employment n due to the aggregation theory of Rogerson (1988). The budget constraint states

that the sum of consumption c and the next period’s capital k′ should be less than or equal to

the sum of net-of-tax labor income (1− τl)w(K, zk)n, current capital k, capital income r(K, zk)k

and government transfers T .

Government then collects taxes on labor earnings τlwn to finance transfers T and government

spendingG. We keep the same assumptions on the firm side as in the heterogeneous-agent models.

The resulting first-order conditions for K and L are the same as those presented in (12) and (13).

A recursive competitive equilibrium is a collection of factor prices r(K, zk), w(K, zk), house-

hold decision rules gk(k,K, zk), gn(k,K, zk), government policy variables τl, G, T , the household

value function V (k,K, zk), the aggregate labor L(K, zk) and the aggregate law of motion for

aggregate capital Γ(K, zk) such that

1. Given factor prices r(K, zk), w(K, zk) and government policy τl, G, T , the value function

V (k,K, z) solves the household’s decision problem, and the associated decision rules are

k′∗ = gk(k,K, zk)

n∗ = gn(k,K, zk).

2. Prices r(K, zk), w(K, zk) are competitively determined following (12) and (13).

3. Government balances its budget:

G+ T = τlw(K, zk)L(K, zk).

4. Consistency is satisfied: for all K,

K ′ = Γ(K, zk) = gk(K,K, zk)

L(K, zk) = gn(K,K, zk).

It is straightforward to calibrate the parameters of Model (RA) using the steady state equi-
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librium equations. First, β is directly obtained by:

β = (1 + r)−1.

Then, given the targets of T/Y = 0.044, L = 0.782 and τl = 0.1111, B is obtained by

B =
(1− τl)(1− α)(
1− δK

Y
− G

Y

)
L

where

K

Y
=

α

r + δ
G

Y
= τ(1− α)− T

Y
.

Finally, since Y/K = (K/L)α−1, we can obtain K/L. This in turn gives us K, and thus Y . We

can then obtain T using the calibration target ratio T/Y = .044. The resulting calibrated values

are β = 0.9901, B = 1.0164, and T = 0.1277.

C Heterogeneous-agent models without labor supply in-

divisibility

Indivisible labor supply is a key feature of our analysis. We illustrate this point by considering

a heterogeneous-agent model with divisible labor. The economic environment in this model is

mostly identical to the heterogeneous-agent models in the main text, and includes features such

as idiosyncratic shocks, progressive taxation, and firm technology. However, one exception is

that households can adjust their hours in a fully flexible way under the following period utility

function with constant Frisch elasticity γ:

U(c, h) = log c− ξ h
1+ 1

γ

1 + 1
γ

. (A1)

We consider two different values of γ ∈ {1, 2}. To illustrate the role of transfers for business
cycle fluctuations in this alternative environment, we consider two cases: zero transfers and flat

transfers. In the latter case, we target the same moment (4.4% of output) that is used in the

main text. For each specification, we also calibrate ξ and β to target the full-time employment

rate of 78.2% and the real interest rate of 1% where full-time is defined as hours greater than
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0.2.

The results are summarized in Table A1, with two findings in particular being worth highlight-

ing. First, the models without indivisible labor supply have diffi culty in generating a suffi ciently

high volatility of hours worked, echoing the performance of representative-agent real business

cycle models (Kydland and Prescott 1982). Even with a relatively large value of γ = 2, the

volatility of aggregate hours is considerably smaller than in the data. Moreover, these divisible

labor models generate average labor productivity that is almost perfectly correlated with output,

given that labor supply responses are nearly homogeneous across households and thus do not

vary negatively with individual productivity. This is in sharp contrast to our baseline models

with labor supply indivisibility (recall Proposition 1 in Section 2). The second notable observa-

tion is that the presence of transfers appears almost irrelevant to the cyclicality of average labor

productivity, although it does moderately raise the volatility of hours.

Table A1: Results from models without indivisibility

γ = 1 γ = 2 Indivisible
T/Y = .00 .044 .00 .044 (HA-N) (HA-F)

σY 1.15 1.16 1.27 1.28 1.48 1.46
σC/σY 0.32 0.30 0.31 0.29 0.28 0.27
σI/σY 2.77 2.77 2.79 2.79 2.99 2.99
σL/σY 0.34 0.35 0.45 0.47 0.64 0.62
σH/σY 0.28 0.30 0.36 0.39 0.51 0.60
σY/H/σY 0.73 0.70 0.65 0.62 0.54 0.57

Cor(Y,C) 0.91 0.91 0.91 0.90 0.85 0.84
Cor(Y, I) 0.99 0.99 0.99 0.99 0.99 0.99
Cor(Y, L) 0.98 0.98 0.98 0.98 0.96 0.96
Cor(Y,H) 0.98 0.97 0.98 0.99 0.95 0.87
Cor(Y, Y/H) 1.00 1.00 0.99 0.99 0.95 0.85
Cor(H,Y/H) 0.96 0.97 0.96 0.96 0.81 0.81

Note: Each model specification is calibrated to generate the same interest rate and the full-time employment rate.

D Aggregate data

The business cycle statistics are based on the aggregate time-series data from U.S. Bureau of

Economic Analysis (BEA), National Income and Product Accounts (NIPA) Tables covering the

period from 1961Q1 to 2016Q4. For output, we use the “Real Gross Domestic Product (millions
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Figure A1: Cyclical component of real GDP per capita

Note: A quarterly series of real GDP per capita is detrended using HP filter with a smoothing parameter of 1,600.

of chained 2012 dollars)”entry in Table 1.1.6. As for consumption, we use expenditures on non-

durable goods and services, as reported in Table 2.3.5 (Personal Consumption Expenditure).

Investment is constructed as the sum of expenditures on durable goods (Table 2.3.5) and private

fixed investments (Table 5.3.5). The real values of consumption and investment are calculated

using the price index for Gross Domestic Product from Table 1.1.4. Data on total hours worked

are obtained from Cociuba et al. (2018). We modified all of the raw time series into per capita

series by dividing the raw data by the quarterly population reported by Cociuba et al. (2018).

A target statistic regarding the size of income-security transfers is based on the aggregate data

obtained also from the BEA NIPA Tables. Specifically, we use data from Table 3.12 (Govern-

ment Social Benefits) on the Supplemental Nutrition Assistance Program (SNAP), Supplemental

Security Income, Temporary Disability Insurance, and medical care (Medicaid, General Medical

Assistance, and state child healthcare programs). Note that we do not include large programs

such as Medicare, unemployment insurance, and veterans’benefits.
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E Micro data

For the transfer-related statistics obtained at the micro level, we use data from the Survey of In-

come and ProgramParticipation (SIPP). This data set is representative of the non-institutionalized

U.S. population and has a monthly survey period. The SIPP covers a wide range of information

on income, wealth, and participation in various transfer programs. We choose samples from the

first wave to the ninth wave of the SIPP, covering the years 2001 to 2003. The original data set

is composed of a main module and several topical modules. While the main module contains

monthly information on income and transfers, variables such as wealth are reported quarterly in

the topical modules. We combine both modules on a quarterly basis.

We construct all variables at the household level. Data sets in the SIPP contain not only

household variables but also individual variables so, in order to generate a household variable from

its corresponding individual variable, we take the following steps. First, we identify households by

their sample unit identifier (SSUID) and their sample household address identifier (SHHADID).

Second, we add up the values of the variable in question for all members of the same household.

The government transfers used to infer the degree of progressivity are based on a broad range of

transfer programs including Supplemental Security Income (SSI), Temporary Assistant for Needy

Family (TANF), the Supplemental Nutrition Assistance Program (SNAP), the Supplemental

Nutrition Program for Women, Infants, and Children (WIC), childcare subsidies and Medicaid.

We do not include age-dependent programs such as Social Security and Medicare. We also

construct a broad household income variable: it consists of labor income, income from financial

investments, and property income. We consider households whose head is aged between 23 and

65, and the results we presented are almost the same as for alternative age ranges around these

limits. Finally, we convert the nominal values of all these variables to 2001 U.S. dollars using

the CPI-U.

The empirical analysis in Section 6 is based on the PSID data. We choose samples for the

period of 1969—2010. To avoid the oversampling of low-income household heads, we exclude

households listed in the Survey of Economic Opportunity. We also drop the samples whose wage

is below one half of the minimum wage. The nominal values are again converted into 2001 U.S.

dollars using the CPI-U.

F Estimation of idiosyncratic productivity risk

We estimate the persistence of idiosyncratic productivity risk in the U.S. using the PSID data,

following Heathcote et al. (2010). Our measure of productivity is defined as a worker’s hourly

wage relative to other individuals. We consider household heads between the ages of 18 and 70,
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and whose wages were observed for at least four consecutive periods.31 To focus on full-time

workers, we drop the samples whose annual hours worked was less than 1, 000.

We run the ordinary least squares regression on the logarithm of the productivity (hourly

wages) on a dummy for male, a cubic polynomial in potential experience (age minus years of

education minus five), a time dummy, and a time dummy interacted with a college education

dummy. We take its residual xi,j as an idiosyncratic productivity variable that contains a wide

range of individual abilities valued by the labor market. This stochastic process is composed of

the summation of a persistent process ηi,j and a transitory process νi,j as described by:

xi,j = ηi,j + νi,j, νi,j ∼ N(0, σ2ν), (A2)

η
′

i,j = ρηηi,j−1 + ε
′

i,j, ε
′

i,j ∼ N(0, σ2ε ).

We use a minimum distance estimator to estimate the parameters of the process. This method

is used to find parameters that minimize the distance between the empirical and theoretical

moments. We take the covariance matrix of the residual xi,j as our moments, and denote θ by

the vector (ρη, σv, σε). We then let mj,j+n(θ) be the covariance of the labor productivity between

age j and j + n individuals, and define m̂j,j+n as the empirical counterpart of mj,j+n(θ). We use

the following moment conditions:

E [m̂j,j+n −mj,j+n(θ)] = 0 (A3)

where

m̂j,j+n =
1

Nj,j+n

Nj,j+n∑
i=1

xi,j · xi,j+n

The moments can be represented by as an upper triangle matrix:

m̄(θ) =



m0,0(θ) m0,1(θ) · · · · · · m0,J−1(θ) m0,J(θ)

0 m1,1(θ) · · · · · · m1,J−1(θ) m1,J(θ)

0 0 m2,2(θ) · · · m2,J−1(θ) m2,J(θ)
...

...
...

. . .
...

...

0 0 0 · · · mJ−1,J−1(θ) mJ−1,J(θ)

0 0 0 · · · 0 mJ,J(θ)


31We use a somewhat less restricted age range in order to obtain a large number of samples. Note that we

impose stricter restrictions on wages and hours, which would naturally remove irrelevant samples such as retirees.
Thus, a change in the age band leads to only relatively small changes in the estimated persistence of idiosyncratic
shocks.
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We denote a vector of M̄(θ) by vectorizing m̄(θ) with length (J + 1)(J + 2)/2. To estimate

parameters θ, we solve

min
θ

[
ˆ̄M − M̄(θ)

]′
W
[

ˆ̄M − M̄(θ)
]

where the weighting matrix W is set to be an identity matrix.32

G Numerical methods used for the heterogeneous-agent

models

G.1 Solving for the equilibrium with aggregate risk

The models which aggregate risk are solved with the following two steps. First, we solve for the

individual policy functions given the forecasting rules (the inner loop). Then, we update the

forecasting rules by simulating the economy using those individual policy functions (the outer

loop). We iterate the two steps until the forecasting rules converge– that is, when the difference

between the old forecasting rule used in the inner loop and the new forecasting rule generated in

the outer loop becomes small enough.

G.1.1 Inner loop

In the inner loop, we solve for the following value functions: V (a, xi, K, zk), V
E(a, xi, K, zk) and

V N(a, xi, K, zk). These value functions are stored on a non-evenly spaced grid for a and an evenly-

spaced grid for K, with the number of grid points being na = 400 and nK = 40, respectively.

Unlike Chang and Kim (2006, 2007) and Takahashi (2014), we discretize the stochastic processes

for xi and zk by using the Rouwenhorst (1995) method. We find that the approximation of

continuous AR(1) processes with our estimate featuring very high persistence is considerably

better with the Rouwenhorst method given the same number of grid points.33 Our baseline

results are based on nx = 10 and nz = 5, both of which replicate the true parameters of the

continuous AR(1) processes very precisely.

To obtain V (a, xi, K, zk) = max
[
V E(a, xi, K, zk), V

N(a, xi, K, zk)
]
, we solve the following

32Using the identity matrix has been common in the literature since Altonji and Segal (1996) show that the
optimal weighting matrix generate severe small sample biases.
33Specifically, we use the simulated data from the methods of Rouwenhorst and Tauchen, and estimate the

persistence and the standard deviation of the error terms in the AR(1) processes for both aggregate productivity
shocks and idiosyncratic shocks (results available upon request).
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problems

V E(a, xi, K, zk) = max
a′≥a,
c≥0

{
log c−Bn̄+ β

Nx∑
j=1

πxij

Nz∑
l=1

πzklV (a′, x′j, K̂
′, z′l)

}
(A4)

subject to

c+ a′ ≤ τ(e, ē)e(ŵ(K, zk)) + (1 + r̂(K, zk))a+ T (ŵ(K, zk), r̂(K, zk))

and

V N(a, xi, K, zk) = max
a′>a,
c>0

{
log c+ β

Nx∑
j=1

πxij

Nz∑
l=1

πzklV (a′, x′j, K̂
′, z′l)

}
(A5)

c+ a′ ≤ (1 + r̂(K, zk))a+ T (r̂(K, zk))

To evaluate the functional value of the expected value function on (a′, K̂ ′) which are not on

the grid points, we use the piecewise-linear interpolation. By solving these problems, we ob-

tain the individual policy function for work gn(a, xi, K, zk) by comparing V E(a, xi, K, zk) with

V N(a, xi, K, zk). We also obtain conditional policy functions for the optimal a′ : gEa (a, xi, K, zk)

as the maximizer of the problem (A4) and gNa (a, xi, K, zk) as the maximizer of the problem (A5).

G.1.2 Outer loop

In the outer loop, we simulate the model economy based on the information obtained in the

inner loop. We note that a key step is to find the market-clearing prices in each period during

the simulation. Although this is computationally burdensome, we find that the results without

the market-clearing step are substantially misleading, as is consistent with Takahashi (2014) and

Chang and Kim (2014).

The measure of households µ(a, xi) is approximated by a non-evenly spaced grid on a that is

finer than that used in the inner loop (Rios-Rull 1999) and has 4,000 grid points. The variable

K is then constructed by aggregating individual asset holdings over the measure of households:∫
a

∑Nx
i=1 aµ(da, xi). Following Takahashi (2014), we use a bisection method to obtain the equilib-

rium factor prices in each simulation period as follows:

1. Set an initial range of (wL, wH) and calculate the aggregate labor demand Ld = (1 −
α)

1
α (zk/w)

1
αK implied by the firm’s FOC for each w. Note that r is obtained by using the

relationship r = z
1
α
k α
(

w
1−α
)α−1

α − δ, implied jointly by (12) and (13).

2. Calculate the aggregate effi ciency unit of labor supply Ls at each w and make sure that

the excess labor demand (Ld − Ls) is positive at wL and it is negative at wH .
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3. Compute w̃ = wL+wH
2

and obtain Ld − Ls at w̃. If Ld − Ls > 0, set wL = w̃; otherwise, set

wH = w̃.

4. Continue updating (wL, wH) until |wL − wH | is small enough.

Taking the measure of households µ(a, xi), the aggregate state (K, zk), and factor prices w

and r as given, we compute the aggregate effi ciency unit of labor supply Ls(K, zk). Specifically,

we solve (A4) and (A5) given the expected value function in the next period using interpolation.

Note that we use the valued function obtained in the inner loop and the forecasting rule (18)

for K̂ ′ = Γ(K, zk) which is not on the grid points of K. Then, the individual household decision

rules are given by

n = gn(a, xi, K, zk) =

n̄ if V E(a, xi, K, zk) > V N(a, xi, K, zk),

0 otherwise.

By having n = gn(a, xi, K, zk) for each grid point (a, xi) on µ at hand, the aggregate effi ciency

unit of labor supply is obtained by Ls(K, zk) =
∫
a

∑Nx
i=1 xign(a, xi, K, zk)µ(da, xi). After finding

the market-clearing prices, we update the measure of households in the next period by using

a′ = ga(a, xi, K, zk) =

gE(a, xi, K, zk) if V E(a, xi, K, zk) > V N(a, xi, K, zk),

gN(a, xi, K, zk) otherwise,

and the stochastic process for xi. We simulate the economy for 10, 000 periods, as in Khan and

Thomas (2008).

Finally, the coeffi cients (a0, a1, a2, b0, b1, b2) in the forecasting rules

logK ′ = a0 + a1 logK + a2 log z, (A6)

logw = b0 + b1 logK + a2 log z, (A7)

are updated by ordinary least squares with the simulated sequence of {K ′, w,K, z}. Our para-
metric assumptions regarding the forecasting rules are the same as those made in Chang and

Kim (2007, 2014) and Takahashi (2014, 2020). We repeat the whole procedure for the inner and

outer loops until the coeffi cients in the forecasting rules converge.

As is clear in the forecasting rules (A6) and (A7), households predict prices and the future

distributions of capital based only on the mean capital stock instead of the entire distribution.

Therefore, it is important to check whether the equilibrium forecast rules are precise or not.

We summarize the results regarding the accuracy of the forecasting rules for the future mean
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capital stock K ′ and for the wage w in Table A2. It is clear that all R2 values are very high

in all specifications. We also check the accuracy statistic proposed by Den Haan (2010). Since

our dependent variables are logarithmic, we multiply the statistics by 100 to interpret them as

percentage errors. We find that the mean errors are suffi ciently small (considerably less than

0.1% for all cases) and the maximum errors are also reasonably small (not exceeding 0.8% for

all cases).

Table A2: Estimates and accuracy of forecasting rules

Model Dependent Coeffi cient Den Haan (2010) error
variable Const. logK log z R2 Mean (%) Max (%)

(HA-T) logK ′ 0.1193 0.9554 0.0940 0.99997 0.088 0.445
logw -0.2689 0.4242 0.8037 0.99818 0.086 0.749

(HA-N) logK ′ 0.1528 0.9413 0.1170 0.99998 0.087 0.499
logw -0.5117 0.5291 0.6683 0.99918 0.060 0.452

(HA-F) logK ′ 0.1489 0.9431 0.1154 0.99998 0.086 0.427
logw -0.4557 0.5045 0.6826 0.99920 0.058 0.425

G.2 Impulse response functions

There is no generally accepted way to calculate conditional impulse responses in nonlinear models.

To compute impulse response functions in this paper, we follow the simulation-based procedure

developed by Koop et al. (1996) (see also Bloom et al. 2018):

• Draw i = 1, ..., Nsim sets of exogenous random variables for aggregate TFP shocks, each of

which have t = 1, ..., Tsim periods.34

• For each set of i, simulate two sequences, one is from the shock economy and the other is

from the no-shock economy.

1. In the shock economy, simulate all interested variables Xshock
it for t = 1, ..., Tshock − 1

as normal (as we do in the outer loop). Then, in period Tshock, impose a disturbance

34We use a random sampling with Markov chains. That is, by taking as given the index for today’s aggregate
productivity i and the conditional distribution for tomorrow’s productivity {πzij}Nz

j=1 (i.e., the i-th row of the
Markov chain), we draw a random variable u ∼ U [0, 1] to pick up tomorrow’s shock index j. We do so by
choosing the highest j satisfying the condition u <

∑j
k=1 π

z
ik.
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on aggregate TFP so that it takes an extreme value (e.g., the lowest one z1). Simulate

the economy as normal for the rest of the periods t = Tshock + 1, ..., Tsim.35

2. In the no-shock economy, simulate all interested variables Xnoshock
it for all the peri-

ods without any restrictions. The two economies are different only in terms of the

imposition of the extreme shock in period Tshock.

• The effect of the disturbance on X is given by the average percentage (or percentage point)

difference between the two sequences:

X̂t = 100× 1

Nsim

Nsim∑
i=1

log
(
Xshock
it /Xnoshock

it

)
(percentage difference)

X̂t = 100× 1

Nsim

Nsim∑
i=1

(
Xshock
it −Xnoshock

it

)
(percentage point difference)

The results are based on Nsim = 2, 000 simulations with each simulation having two sequences

of the variables of interest for Tsim = 150 periods. The responses are equal to zero before Tshock
by construction. The disturbance then hits the economy at period Tshock = 50, which we label

as the first period in our figures.

H Additional model results

Table A3 reports business cycle results for several alternative models recalibrated to match the

same target statistics as in Table 1. First, we replace the progressive taxation system in (8) with

a linear taxation system while keeping the average tax constant. This is helpful for understanding

how important the presence of progressive taxation is for business cycles while controlling for

transfer progressivity. We find that its impact is very minimal for business cycle fluctuations.

The second sensitivity check concerns the borrowing limit. The third column in Table 1 reports

the results from when we set a to zero, and these show that aggregate fluctuations are barely

affected by this change. Next, we consider a change in target statistics regarding the variability

of idiosyncratic shocks. Recall that the baseline model targets the Gini wage of 0.36. We find

that, although its impact is not sizable, a higher wage variation tends to lower the cyclicality of

average labor productivity and raise the relative volatility of hours.

35Note that the effect of the disturbance is persistent because we sample aggregate productivity using the
conditional distribution of the Markov chain.
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Figure A2: Aggregate labor supply elasticities and arc elasticities for different model specifica-
tions
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Note: The arc elasticities (bottom panel) are computed, based on the reservation raise distribution that can be

interpreted as a extensive-margin labor supply curve. The latter is smoothed as in Mui and Schoefer (2020).

Specifically, we use moving averages with a window length of 5. The reservation raise value of ξ represents a

gross percentage change in the agent’s potential wage that would make the agent indifferent between working and

non-working, divided by 100. The bottom right panel is from a version of Model (HA-N) with ρx = 0.929 and

σx = 0.227 (Chang and Kim 2007).

A-17



Figure A3: Aggregate labor supply elasticities and arc elasticities with higher progressivity
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Note: We plot the reservation raise distribution or extensive-margin labor supply (top panel) and the corre-

sponding arc elasticities (bottom panel) for two counterfactual exercises that increase progressivity in Section

5.3.
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Figure A4: Impulse responses of macroeconomic aggregates with respect to positive TFP shocks
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Note: TFP denotes total factor productivity. The figures display the IRFs of macroeconomic aggregates to a

positive 2 percent TFP shock with persistence ρz.

Figure A5: Impulse responses of equilibrium prices
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Note: The figures display equilibrium market-clearing price responses, wt and rt, to a negative 2 percent TFP

shock with persistence ρz. In heterogeneous-agent models, wt captures the aggregate component of wages condi-

tional on the worker selection in each period.
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Table A3: Sensitivity checks

Baseline Linear Gini wage Gini wage
Taxation a = 0 = 0.35 = 0.37

σY 1.27 1.23 1.27 1.32 1.24
σC/σY 0.27 0.28 0.27 0.26 0.27
σI/σY 2.87 2.85 2.86 2.87 2.85
σL/σY 0.50 0.47 0.50 0.53 0.48
σH/σY 0.73 0.66 0.73 0.80 0.66
σY/H/σY 0.64 0.64 0.65 0.62 0.63

Cor(Y,C) 0.85 0.87 0.84 0.84 0.85
Cor(Y, I) 0.99 0.99 0.99 0.99 0.99
Cor(Y, L) 0.92 0.91 0.92 0.94 0.92
Cor(Y,H) 0.77 0.78 0.76 0.79 0.79
Cor(Y, Y/H) 0.69 0.76 0.68 0.60 0.76
Cor(H,Y/H) 0.07 0.18 0.04 -0.02 0.21

Note: Each alternative model is recalibrated to match the same target statistics as in the baseline model.

I Additional empirical results

We provide additional results presented in Section 6 for sensitivity checks.
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Table A4: Probability of extensive margin adjustment, by wage quintile

The length of tracking time T
5 years 10 years 15 years

Wage quintile Switches Switches Switches
in base year All Pos only Neg only All Pos only Neg only All Pos only Neg only

1st .146 .097 .049 .119 .079 .039 .103 .070 .033
2nd .093 .060 .033 .080 .052 .029 .072 .046 .026
3rd .075 .045 .030 .066 .040 .027 .063 .039 .024
4th .069 .037 .032 .061 .033 .028 .055 .030 .025
5th .072 .040 .032 .062 .033 .029 .060 .031 .029

Base years 1969—1993 (J = 25) 1969—1988 (J = 20) 1969—1983 (J = 15)
Avg. no. obs 1,677 1,189 834
in base years
Total no. obs. 41,920 23,783 12,514
Avg. age 40.2 41.0 41.5

Note: The full-time employment threshold is set to 1,500 annual hours. Numbers in parentheses show the number

of base years. We use samples whose age is between 22 and 64 (inclusive) and who are heads and are not self-

employed. "All" refers to the baseline estimates when using both positive and negative switches, whereas "pos

only" and "neg only" use only positive ones (i.e., Ei,t = 1 and Ei,t−1 = 0) and only negative ones (i.e., Ei,t = 0

and Ei,t−1 = 1), respectively.
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Table A5: Full-time employment changes in recessions excluding samples with unemployment
spells, by wage quintile

Recession
1973—76 1980—83 1990—92 2000—02 2006—10

Wage quintile
in peak year

1st -10.7 -4.7 -7.8 -5.2 -8.6
2nd -5.5 -0.8 -4.9 -3.6 -8.8
3rd -6.6 -3.4 -4.7 -1.6 -6.4
4th -4.2 -6.1 -3.5 -4.0 -7.2
5th -5.2 -5.2 -4.1 -1.8 -4.7

No. obs. 1,547 1,481 1,765 2,454 2,365

Note: The full-time employment threshold is set to 1,000 annual hours. The year ranges denote the peak and

trough years of each recession. Reported values are percentage changes in the full-time employment rate by

wage quintiles (in the peak year of each recession) following the same set of individuals. Those who experienced

unemployment spells in either the peak year or the trough year are excluded. The results for the first recession

is omitted because the unemployment information is available only since the 1976 wave (or the year of 1975).

Table A6: Full-time employment changes in recessions, by wage quintile

Recession
1969—71 1973—76 1980—83 1990—92 2000—02 2006—10

Wage quintile
in peak year

1st -7.3 -10.4 -11.1 -7.1 -8.3 -17.9
2nd -7.0 -10.5 -10.6 -8.3 -8.9 -16.3
3rd -5.8 -8.2 -6.3 -7.7 -6.7 -14.9
4th -4.2 -4.7 -8.0 -7.2 -5.8 -11.1
5th -1.0 -3.9 -5.2 -3.3 -2.1 -7.4

No. obs. 1,655 1,756 2,007 2,166 2,924 2,802

Note: The full-time employment threshold is set to 1,500 annual hours. The year ranges denote the peak and

trough years of each recession. Reported values are percentage changes in the full-time employment rate by wage

quintiles (in the peak year of each recession) following the same set of individuals.
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Table A7: Full-time employment changes in recessions excluding samples with unemployment
spells, by wage quintile

Recession
1973—76 1980—83 1990—92 2000—02 2006—10

Wage quintile
in peak year

1st -8.5 -3.0 -7.2 -7.0 -9.0
2nd -4.7 -4.3 -5.7 -6.4 -11.1
3rd -6.1 -5.2 -6.9 -4.8 -8.7
4th -4.4 -6.2 -3.9 -5.5 -8.7
5th -2.5 -6.1 -2.4 -2.7 -5.2

No. obs. 1,547 1,481 1,765 2,454 2,365

Note: The full-time employment threshold is set to 1,500 annual hours. The year ranges denote the peak and

trough years of each recession. Reported values are percentage changes in the full-time employment rate by

wage quintiles (in the peak year of each recession) following the same set of individuals. Those who experienced

unemployment spells in either the peak year or the trough year are excluded. The results for the first recession

is omitted because the unemployment information is available only since the 1976 wave (or the year of 1975).
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